Abstract
This paper presents verified quantifier elimination procedures for dense linear orders (two of them novel), for real and for integer linear arithmetic. All procedures are defined and verified in the theorem prover Isabelle/HOL, are executable and can be applied to HOL formulae themselves (by reflection). The formalization of the different theories is highly modular.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ballarin, C.: Interpretation of locales in Isabelle: theories and proof contexts. In: Borwein, J., Farmer, W. (eds.) Mathematical Knowledge Management. LNCS, vol. 4108, pp. 31–43. Springer, Heidelberg (2006)
Boyer, R.S., Moore, J.S.: Metafunctions: proving them correct and using them efficiently as new proof procedures. In: Boyer, R., Moore, J. (eds.) The Correctness Problem in Computer Science, pp. 103–184. Academic, New York (1981)
Chaieb, A.: Verifying mixed real-integer quantifier elimination. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning (IJCAR 2006). LNCS, vol. 4130, pp. 528–540. Springer, Heidelberg (2006)
Chaieb, A., Nipkow, T.: Verifying and reflecting quantifier elimination for Presburger arithmetic. In: Stutcliffe, G., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005). LNCS, vol. 3835, pp. 367–380. Springer, Heidelberg (2005)
Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 91–100. Edinburgh University Press, Edinburgh (1972)
Enderton, H.: A Mathematical Introduction to Logic. Academic, New York(1972)
Farkas, J.: Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27 (1902)
Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4, 69–76 (1975)
Fourier, J.B.J.: Solution d’une question particulière du calcul des inégalités. In: Darboux, G. (ed.) Joseph Fourier—Œuvres Complétes, vol. 2, pp. 317–328. Gauthier-Villars, Paris (1888–1890)
Gonthier, G.: Formal proof—the four-colour theorem. Not. Am. Math. Soc. 55, 1382–1393 (2008)
Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, Th., McBride, C. (eds.) Types for Proofs and Programs (TYPES 2006). LNCS, vol. 4502, pp. 160–174. Springer, Heidelberg (2007)
Harrison, J.: Complex quantifier elimination in HOL. In: Boulton, R., Jackson, P. (eds.) TPHOLs 2001: Supplemental Proceedings, pp. 159–174. Division of Informatics, University of Edinburgh, Edinburgh (2001)
Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, Cambridge (2009)
Langford, C.H.: Some theorems on deducibility. Ann. Math. (2nd Series) 28, 16–40 (1927)
Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36, 450–462 (1993)
Mahboubi, A.: Contributions à la certification des calculs sur ℝ: théorie, preuves, programmation. Ph.D. thesis, Université de Nice (2006)
McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) Automated Deduction—CADE-20. LNCS, vol. 3632, pp. 295–314. Springer, Heidelberg (2005)
Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In: Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008). LNCS, vol. 5330, pp. 243–257. Springer, Heidelberg (2008)
Motzkin, T.: Beiträge zur Theorie der Linearen Ungleichungen. PhD thesis, Universität Basel (1936)
Nipkow, T.: Linear quantifier elimination. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning (IJCAR 2008). LNCS, vol. 5195, pp. 18–33. Springer, Heidelberg (2008)
Nipkow, T.: Reflecting quantifier elimination for linear arithmetic. In: Grumberg, O., Nipkow, T., Pfaller, C. (eds.) Formal Logical Methods for System Security and Correctness, pp. 245–266. IOS, Amsterdam (2008)
Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
Norrish, M.: Complete integer decision procedures as derived rules in HOL. In: Basin, D., Wolff, B. (eds.) Theorem Proving in Higher Order Logics, TPHOLs 2003. LNCS, vol. 2758, pp. 71–86. Springer, Heidelberg (2003)
Obua, S.: Proving bounds for real linear programs in Isabelle/HOL. In: Hurd, J. (ed.) Theorem Proving in Higher Order Logics (TPHOLs 2005). LNCS, vol. 3603, pp. 227–244. Springer, Heidelberg (2005)
Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du I Congrès de Mathématiciens des Pays Slaves, pp. 92–101 (1929)
Weispfenning, V.: The complexity of linear problems in fields. J. Symbol. Comput. 5, 3–27 (1988)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nipkow, T. Linear Quantifier Elimination. J Autom Reasoning 45, 189–212 (2010). https://doi.org/10.1007/s10817-010-9183-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10817-010-9183-0