Skip to main content
Log in

PSPACE Tableau Algorithms for Acyclic Modalized \(\boldsymbol{\mathcal{ALC}}\)

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

We study \(\mathcal{ALCK}_m\) and \(\mathcal{ALCS}4_m\), which extend the description logic \(\mathcal{ALC}\) by adding modal operators of the basic multi-modal logics K m and S4 m . We develop a sound and complete tableau algorithm \(\Lambda_\mathcal{K}\) for answering \(\mathcal{ALCK}_m\) queries w.r.t. an \(\mathcal{ALCK}_m\) knowledge base with an acyclic TBox. Defining tableau expansion rules in the presence of acyclic definitions by considering only the concept names on the left-hand side of TBox definitions or their negations, allows us to give a PSPACE implementation for \(\Lambda_\mathcal{K}\). We then consider answering \(\mathcal{ALCS}4_m\) queries w.r.t. an \(\mathcal{ALCS}4_m\) knowledge base (with an acyclic TBox) in which the epistemic operators correspond to those of classical multi-modal logic S4 m . The expansion rules in the tableau algorithm Λ S4 are designed to syntactically incorporate the epistemic properties. Blocking is corporated into the tableau expansion rules to ensure termination. We also provide a PSPACE implementation for Λ S4. In light of the fact that the satisfiability problem for \(\mathcal{ALCK}_m\) with general TBox and no epistemic properties (i.e., \(\mathbf{K}_{\mathcal{ALC}}\)) is NEXPTIME-complete, we conclude that both \(\mathcal{ALCK}_m\) and \(\mathcal{ALCS}4_m\) offer computationally manageable and practically useful fragments of \(\mathbf{K}_{\mathcal{ALC}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991)

    Article  MATH  Google Scholar 

  3. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D.: Reasoning in expressive description logics. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1581–1634. Elsevier and MIT Press (2001)

  4. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Stud. Log. 69(1), 5–40 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics. Log. J. IGPL 8(3), 239–264 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Horrocks, I.: Daml+oil: a description logic for the semantic web. IEEE Data Eng. Bull. 25(1), 4–9 (2002)

    MathSciNet  Google Scholar 

  7. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From shiq and rdf to owl: the making of a web ontology language. J. Web Sem. 1(1), 7–26 (2003)

    Article  Google Scholar 

  8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  9. Meyer, J.-J.C., Van Der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  10. Blackburn, P., van Benthem, J.F.A.K., Wolter, F.: Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3. Elsevier Science Inc., New York, NY, USA (2006)

    Google Scholar 

  11. Rosati, R.: On the semantics of epistemic description logics. In: Padgham, L., Franconi, E., Gehrke, M., McGuinness, D.L., Patel-Schneider, P.F. (eds.) Description Logics. AAAI Technical Report, vol. WS-96-05, pp. 185–188. AAAI Press (1996)

  12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Epistemic first-order queries over description logic knowledge bases. In: Proc. of the 2006 Description Logic Workshop (DL 2006). CEUR (2006)

  13. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A., Nutt, W.: Adding epistemic operators to concept languages. In: KR, pp. 342–353 (1992)

  14. Donini, F.M., Lenzerini, M., Nardi, D, Nutt, W., Schaerf, A.: An epistemic operator for description logics. Artif. Intell. 100(1–2), 225–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baader, F., Laux, A.: Terminological logics with modal operators. In: IJCAI (1), pp. 808–815 (1995)

  16. Lutz, C., Sturm, H., Wolter, F., Zakharyaschev, M.: A tableau decision algorithm for modalized \(\mathcal{ALC}\) with constant domains. Stud. Log. 72(2), 199–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Baader, F., Ohlbach, H.J.: A multi-dimensional terminological knowledge representation language. J. Appl. Non-Class. Log. 5(2), 153–197 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mosurovic, M., Zakharyaschev, M.: On the complexity of description logics with modal operators. In: Koletsos, G., Kolaitis, P.G. (eds.) 2nd PLS, pp. 166–171 (1999)

  19. Wolter, F., Zakharyaschev, M.: Multi-dimensional description logics. In: Dean, T. (ed.) IJCAI, pp. 104–109. Morgan Kaufmann, San Mateo (1999)

    Google Scholar 

  20. Wolter, F., Zakharyaschev, M.: Satisfiability problem in description logics with modal operators. In: KR, pp. 512–523 (1998)

  21. Wolter, F., Zakharyaschev, M.: Dynamic description logics. In: Zakharyaschev, M., Segerberg, K., de Rijke, M., Wansing, H. (eds.) Advances in Modal Logic, pp. 431–446. CSLI Publications (1998)

  22. Wolter, F., Zakharyaschev, M.: Modal description logics: modalizing roles. Fundam. Inform. 39(4), 411–438 (1999)

    MathSciNet  MATH  Google Scholar 

  23. Wolter, F., Zakharyaschev, M.: Decidable fragments of first-order modal logics. J. Symb. Log. 66(3), 1415–1438 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Donini, F.M., Nardi, D, Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. (TOCL) 3(2), 225 (2002)

    MathSciNet  Google Scholar 

  25. Tobies, S.: Complexity results and practical algorithms for logics in knowledge representation. CoRR. cs.LO/0106031 (2001)

  26. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge representation systems. J. Artif. Intell. Res. (JAIR) 1, 109–138 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Hladik, J., Peñaloza, R.: PSPACE automata for description logics. In: 2006 International Workshop on Description Logics DL’06, p. 74 (2006)

  28. Baader, F., Nutt, W.: Basic description logics. In: Baader et al. (eds.) The Description Logic Handbook: Theory, Implementation, and Applications, pp. 43–95. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  29. Horrocks, I., Hustadt, U., Sattler, U., Schmidt, R.: Computational modal logic. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, chap. 4, pp. 181–245. Elsevier (2006)

  30. Lutz, C.: Complexity of terminological reasoning revisited. In: Ganzinger, H., McAllester, D.A., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 1705, pp. 181–200. Springer (1999)

  31. Nebel, B.: Terminological reasoning is inherently intractable. Artif. Intell. 43(2), 235–249 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vardi, M.Y.: A model-theoretic analysis of monotonic knowledge. In: Proc. Ninth International Joint Conference on Artificial Intelligence (IJCAI’85), pp. 509–512 (1985)

  33. Baader, F., Hladik, J., Peñaloza, R.: Automata can show PSPACE results for description logics. Inf. Comput. 206(9–10), 1045–1056 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, J., Slutzki, G. & Honavar, V. PSPACE Tableau Algorithms for Acyclic Modalized \(\boldsymbol{\mathcal{ALC}}\) . J Autom Reasoning 49, 551–582 (2012). https://doi.org/10.1007/s10817-011-9232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-011-9232-3

Keywords

Navigation