Skip to main content
Log in

Proof Generalization in \(\mathrm {LK}\) by Second Order Unifier Minimization

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

We devise a method for generalizing proofs in Gentzen’s sequent calculus \(\mathrm {LK}\), presented in a typed \(\lambda \)-calculus flavor. A constrained version \(\mathrm {LK}^{{{\mathrm {c}}}}\) of the calculus is introduced, aiming at collecting a second order constraint ensuring that all the inference steps occurring in a proof are syntactically correct. A semantics is provided for \(\mathrm {LK}^{{{\mathrm {c}}}}\), extending the standard semantics of \(\mathrm {LK}\). It is then established that \(\mathrm {LK}\)-proofs correspond to \(\mathrm {LK}^{{{\mathrm {c}}}}\)-proofs with valid constraint thanks to the use of eigenterms replacing \(\mathrm {LK}\)’s eigenvariables. Next, a lifting theorem shows how a valid \(\mathrm {LK}^{{{\mathrm {c}}}}\)-proof can be lifted to a most general proof, yielding a non-trivial constraint together with a solution. An algorithm is then provided that minimizes this solution of the constraint. The result, applied to the most general proof, yields a valid proof that translates to an \(\mathrm {LK}\)-proof more general than the initial one. Finally, clues are given for extending this method to other logics with due care on proof lifting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Formal definitions are given in Sect. 2, see in particular Fig. 1 for the inference rules.

  2. We assume w.l.o.g. that \(D \cap (\mathcal {C}\cup \mathcal {V})= \emptyset \) and that D contains no non-atomic terms in \(\mathcal {T}_D\).

  3. More precisely on a special kind of formulæ called “matrices”.

  4. Note that the \(\mathcal {X}_i\)’s are not part of these meta-variables.

  5. In all rigor the same should be done in [13] for the (\(\Rightarrow \)-L) rule from [25].

  6. These constants cannot be generalized simply because there is no variable of the corresponding types. The equality predicate could be generalized if its specific properties are not used in the proof, i.e., if no paramodulation inference is applied on it. Of course, if no \(\wedge \)-rule is applied on a formula \((\wedge \;t_1\, t_2)\) then it can be generalized by a variable of type \(\mathbf {o}\).

  7. In particular, if \(v\in \{\forall ,\exists \}\) then \(m=1\) and \(z_1\) has type \({\varvec{\i }}^{n+1}\rightarrow \mathbf {o}\). If v is a binary connective then \(m=2\) since t has \(\mathcal {V}\)-type.

  8. Another way to do this is to allow principal formulæ to occur anywhere in the conclusions of the rules. For instance, the (\(\lnot \)-L) rule would be \(\displaystyle \frac{\varGamma ,\varSigma \vdash \varDelta ,\phi }{\varGamma ,\lnot \phi ,\varSigma \vdash \varDelta }.\)

References

  1. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baaz, M., Wojtylak, P.: Generalizing proofs in monadic languages. Ann. Pure Appl. Log. 154(2), 71–138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caferra, R., Zabel, N.: Building models by using tableaux extended by equational problems. J. Log. Comput. 3, 3–25 (1993)

    Article  Google Scholar 

  4. Cavagnetto, S.: The lengths of proofs: Kreisel’s conjecture and Gödel’s speed-up theorem. J. Math. Sci. 158(5), 689–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dowek, G.: Higher-order unification and matching. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Volume II, Chapter 16, pp. 1009–1062. Elsevier Science, New York (2001)

    Chapter  Google Scholar 

  6. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reason. 31(1), 33–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farmer, W.M.: A unification-theoretic method for investigating the \(k\)-provability problem. Ann. Pure Appl. Log. 51(3), 173–214 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Felty, A.P., Howe, D.J.: Generalization and reuse of tactic proofs. In: Pfenning, F. (eds.) LPAR, Volume 822 of Lecture Notes in Computer Science, pp. 1–15. Springer, Berlin (1994)

  9. Giese, M.: Incremental closure of free variable tableaux. In Goré, R., Leitsch, A., Nipkow, T. (eds.) Proceedings of International Joint Conference on Automated Reasoning, Siena, Italy, number 2083 in LNCS, pp. 545–560. Springer (2001)

  10. Hagiya, M.: A typed lambda-calculus for proving-by-example and bottom-up generalization procedure. Theor. Comput. Sci. 137(1), 3–23 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hetzl, S.: A sequent calculus with implicit term representation. In Dawar, A., Veith, H. (eds.) Computer Science Logic, volume 6247 of Lecture Notes in Computer Science, pp. 351–365. Springer, Berlin (2010)

  12. Johnsen, E.B., Lüth, C.: Theorem reuse by proof term transformation. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds.) TPHOLs, volume 3223 of Lecture Notes in Computer Science, pp. 152–167. Springer (2004)

  13. Krajíček, J., Pudlák, P.: The number of proof lines and the size of proofs in first order logic. Arch. Math. Log. 27, 69–84 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lugiez, D.: Positive and negative results for higher-order disunification. J. Symb. Comput. 20(4), 431–470 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Melis, E., Whittle, J.: Analogy in inductive theorem proving. J. Autom. Reason. 22(2), 117–147 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller, D.: Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon University (1983). Technical report: MS-CIS-83-37

  17. Miller, D.: A compact representation of proofs. Stud. Log. 46(4), 347–370 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miller, D.: Unification under a mixed prefix. J. Symb. Comput. 14(4), 321–358 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moser, G., Zach, R.: The epsilon calculus (tutorial). In: Baaz, M., Makowsky, J.A. (eds.) Computer Science Logic, 17th International Workshop, CSL 2003, 12th Annual Conference of the EACSL, and 8th Kurt Gödel Colloquium, KGC 2003, Vienna, Austria, August 25–30, 2003, Proceedings, volume 2803 of Lecture Notes in Computer Science, p. 455. Springer, (2003)

  20. Moser, G., Zach, R.: The epsilon calculus and Herbrand complexity. Stud. Log. 82(1), 133–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Parikh, R.J.: Some results on the length of proofs. Trans. Am. Math. Soc. 177, 29–36 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peltier, N.: Pruning the search space and extracting more models in tableaux. Log. J. IGPL 7(2), 217–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pfenning, F.: Unification and anti-unification in the calculus of constructions. In: Proceedings of Sixth Annual IEEE Symposium on Logic in Computer Science, 1991. LICS ’91, pp. 74–85 (1991)

  24. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning, volume 5330 of Lecture Notes in Computer Science, pp. 274–289. Springer, Berlin (2008)

  25. Takeuti, G.: Proof Theory, 2nd edn. North Holland, New York (1987)

    MATH  Google Scholar 

  26. Walther, C., Kolbe, T.: Proving theorems by reuse. Artif. Intell. 116(1–2), 17–66 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zach, R.: The practice of finitism: epsilon calculus and consistency proofs in Hilbert’s program. Synthese 137(1–2), 211–259 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their helpful comments and references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Boy de la Tour.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boy de la Tour, T., Peltier, N. Proof Generalization in \(\mathrm {LK}\) by Second Order Unifier Minimization. J Autom Reasoning 57, 245–280 (2016). https://doi.org/10.1007/s10817-016-9367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-016-9367-3

Keywords

Mathematics Subject Classification

Navigation