Skip to main content
Log in

Fast Formal Proof of the Erdős–Szekeres Conjecture for Convex Polygons with at Most 6 Points

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

A conjecture originally made by Klein and Szekeres in 1932 (now commonly known as “Erdős–Szekeres” or “Happy Ending” conjecture) claims that for every \(m \ge 3\), every set of \(2^{m-2}+1\) points in a general position (none three different points are collinear) contains a convex m-gon. The conjecture has been verified for \(m \le 6\). The case \(m=6\) was solved by Szekeres and Peters and required a huge computer enumeration that took “more than 3000 GHz hours”. In this paper we improve the solution in several directions. By changing the problem representation, by employing symmetry-breaking and by using modern SAT solvers, we reduce the proving time to around only a half of an hour on an ordinary PC computer (i.e., our proof requires only around 1 GHz hour). Also, we formalize the proof within the Isabelle/HOL proof assistant, making it significantly more reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The name was coined by Paul Erdős, since the original problem posed for \(m=4\) and \(n=5\) by Esther Klein led to her marriage to George Szekeres.

  2. This is the standard input format for SAT solvers.

  3. The patch was taken from the SAT 2014 competition website http://www.satcompetition.org/2014/description.shtml.

References

  1. Aehlig, K., Haftmann, F., Nipkow, T.: A compiled implementation of normalization by evaluation. In: Mohamed, O.A., Munoz, C., Tahar, S. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2008), LNCS, vol. 5170, pp. 39–54. Springer, Berlin (2008)

    Chapter  Google Scholar 

  2. Avigad, J., Harrison, J.: Formally verified mathematics. Commun. ACM 57(4), 66–75 (2014)

    Article  Google Scholar 

  3. Ballarin, C.: Interpretation of locales in Isabelle: theories and proof contexts. In: Proceedings of Mathematical Knowledge Management, MKM, pp. 31–43 (2006)

  4. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  5. Bonnice, W.E.: On convex polygons determined by a finite planar set. Am. Math. Mon. 81, 749752 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolution proof checking. In: Proceedings of Automated Deduction—CADE-26—26th International Conference on Automated Deduction, Gothenburg, Sweden, LNCS. Springer (2017)

  7. Dehnhardt, K., Harborth, H., Längi, Z.: A partial proof of the Erdős–Szekeres conjecture for hexagons. J. Pure Appl. Math. Adv. Appl. 2, 6986 (2009)

    MATH  Google Scholar 

  8. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    MathSciNet  MATH  Google Scholar 

  9. Hales, T.C. (ed.): Notices of the AMS: Special Issue on Formal Proof, vol. 55(11). American Mathematical Society (2008)

  10. Harrison, J.: HOL light: a tutorial introduction. In: Proceedings of Formal Methods in Computer-Aided Design, First International Conference, FMCAD’96, Palo Alto, California, USA, pp. 265–269 (1996)

  11. Hölldobler, S., Manthey, N., Philipp, T., Steinke, P.: Generic CDCL—a formalization of modern propositional satisfiability solvers. In: POS@ SAT, pp. 89–102 (2014)

  12. Huet, G., Herbelin, H.: 30 years of research and development around Coq. In: Principles of Programming Languages, POPL, pp. 249–250 (2014)

  13. Kalbfleisch, J.D., Kalbfleisch, J.G., Stanton, R.G.: A combinatorial problem on convex n-gons. In: Proceedings of Louisiana Conference on Combinational Graph Theory Computing, Louisiana State University, Baton Rouge (1970)

  14. Knuth, D.E.: Axioms and Hulls, LNCS, vol. 606. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  15. Lammich, P.: Efficient verified (un)sat certificate checking. In: Proceedings of Automated Deduction—CADE-26—26th International Conference on Automated Deduction, Gothenburg, Sweden, LNCS. Springer (2017)

  16. Marić, F.: Formalization and implementation of modern SAT solvers. J. Autom. Reason. 43(1), 81–119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333–4356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marić, F.: A survey of interactive theorem proving. Zb. Rad. 18, 173–223 (2015)

    MathSciNet  Google Scholar 

  19. Morris, W., Soltan, V.: The Erdős–Szekeres problem on points in convex position—a survey. Bull. Am. Math. Soc. 37, 437–458 (2000)

    Article  MATH  Google Scholar 

  20. Morris, W., Soltan, V.: The Erdős–Szekeres Problem. Springer, Cham (2016)

    MATH  Google Scholar 

  21. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

  22. Pichardie, D., Bertot, Y.: Formalizing convex hull algorithms. In: Boulton, R.J., Jackson, P.B. (eds.) Proceedings of Theorem Proving in Higher Order Logics: 14th International Conference, TPHOLs 2001 Edinburgh, Scotland, UK, pp. 346–361. Springer, Berlin (2001)

  23. Shankar, N., Vaucher, M.: The mechanical verification of a DPLL-based satisfiability solver. Electron. Notes Theor. Comput. Sci. 269, 3–17 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Suk, A.: On the Erdős-Szekeres convex polygon problem. J. Am. Math. Soc. 30, 1047–1053 (2017)

    Article  MATH  Google Scholar 

  25. Szekeres, G., Peters, L.: Computer solution to the 17-point Erdős–Szekeres problem. ANZIAM J. 48(2), 151–164 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weber, T.: Efficiently checking propositional resolution proofs in Isabelle/HOL. In: Benzmüller, C., Fischer, B., Sutcliffe, G. (eds.) Proceedings of the 6th International Workshop on the Implementation of Logics, CEUR Workshop Proceedings, vol. 212, pp. 44–62 (2006)

  27. Weber, T.: Integrating a SAT solver with an LCF-style theorem prover. Electr. Notes Theor. Comput. Sci. 144(2), 67–78 (2006)

    Article  MATH  Google Scholar 

  28. Wenzel, M.: Isabelle/Isar—a generic framework for human-readable proof documents. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof—Festschrift in Honour of Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric, vol. 10(23). University of Bialystok (2007)

  29. Wetzler, N., Heule, M.J.H., Hunt, W.A.: Drat-trim: Efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing—SAT 2014: 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, Proceedings, pp. 422–429. Springer, Cham (2014)

  30. Wetzler, N.D., et al.: Efficient, mechanically-verified validation of satisfiability solvers. Ph.D. thesis, University of Texas, Austin, USA (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Marić.

Additional information

This work has been partially supported by the Grant 174021 of the Ministry of Science of Serbia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marić, F. Fast Formal Proof of the Erdős–Szekeres Conjecture for Convex Polygons with at Most 6 Points. J Autom Reasoning 62, 301–329 (2019). https://doi.org/10.1007/s10817-017-9423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-017-9423-7

Keywords

Navigation