Skip to main content
Log in

Formalization of Euler–Lagrange Equation Set Based on Variational Calculus in HOL Light

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

As the theoretical foundation of Lagrangian mechanics, Euler–Lagrange equation sets are widely applied in building mathematical models of physical systems, especially in solving dynamics problems. However, their preconditions are often not fully satisfied in practice. Therefore, it is necessary to verify their applications. The purpose of the present work is to conduct such verification by establishing a formal theorem library of Lagrangian mechanics in HOL Light. For this purpose, some basic concepts such as functional variation and the necessary conditions for functional extreme are formalized. Then, the fundamental lemma of variational calculus is formally verified and some new constuctors and destructors are proposed. Finally, the Euler–Lagrange equation set is formalized. To validate the formalization, the formalization results are applied to verify the least resistance problem of gas flow. The present work not only lays a necessary and solid foundation for application involving Lagrangian mechanics but also extends the HOL Light theorem library.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adnan, R., Osman, H.: Formal analysis of robotic cell injection systems using theorem proving. In: Conference on Intelligent Computer Mathematics, pp. 1–9. RISC, Hagenberg (2018). https://arxiv.org/pdf/1807.07378.pdf

  2. Agrawal, O.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Binyameen, F., Osman, H., Sohail, I.: Formal kinematic analysis of the two-link planar manipulator. In: International Conference on Formal Engineering Methods (2013)

  4. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Isabelle/HOL. In: International Conference on Frontiers of Combining Systems, pp. 12–27 (2011)

  5. Bliss, G.A.: Lectures on the Calculus of Variations. The University of Chicago Press, Chicago (1946)

    MATH  Google Scholar 

  6. Boldo, S., Lelay, C., Melquiond, G.: Formalization of real analysis: a survey of proof assistants and libraries. Math. Struct. Comput. Sci. 26(7), 1196–1233 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Botelho, F.: Basic Concepts on the Calculus of Variations. Springer International Publishing, Cham (2014)

    Book  Google Scholar 

  8. Ferguson, J.: A brief survey of the history of the calculus of variations and its applications. Mathematics 1–26 (2004)

  9. Garaev, K.G., Aksent’Ev, L.A.: A problem on brachistochrone as invariant variational problem. Russ. Math. 61(1), 81–84 (2017)

    Article  MATH  Google Scholar 

  10. Gelfand, I.M., Fomin, S.V.: Calculus of Variations (translated by R. A. Silverman). Prentice-Hall, Upper Saddle River (1963)

    Google Scholar 

  11. Gottliebsen, H., Hardy, R., Lightfoot, O., Martin, U.: Applications of real number theorem proving in PVS. Form. Asp. Comput. 25(6), 993–1016 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hamilton, E.P., Nashed, M.Z.: Global and local variational derivatives and integral representations of Gâutex differentials. J. Funct. Anal. 49(1), 128–144 (1982)

    Article  MATH  Google Scholar 

  13. Harrison, J.: HOL Light: an overview. In: International Conference on Theorem Proving in Higher Order Logics, pp. 60–66 (2009)

  14. Harrison, J.: The HOL Light theory of Euclidean space. J. Autom. Reason. 50(2), 173–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, J.H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 19(4), 847–851 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harrison, J., Maggesi, M.: HOL Light Vector and Matrice (2019). https://github.com/jrh13/hol-light/tree/master/Multivariate/vectors.ml

  17. Harrison, J., Bruno, V., Maggesi, M.: HOL Light Topology (2019). https://github.com/jrh13/hol-light/tree/master/Multivariate/topology.ml

  18. Harrison, J., Maggesi, M.: HOL Light Metric (2019). https://github.com/jrh13/hol-light/tree/master/Multivariate/metric.ml

  19. Harrison, J., Maggesi, M.: HOL Light Integral (2019). https://github.com/jrh13/hol-light/tree/master/Multivariate/integral.ml

  20. Harrison, J., Maggesi, M.: HOL Light Derivative (2019). https://github.com/jrh13/hol-light/tree/master/Multivariate/derivative.ml

  21. Harrison, J.: HOL Light Real Analysis (2019). https://github.com/jrh13/hol-light/tree/master/Multivariate/realanalysis.ml

  22. Hunt, J.W., Kaufmann, M., Moore, J.S., Slobodova, A.: Industrial hardware and software verification with ACL2. Philos. Trans. 375(2104), 20150399 (2017)

    Google Scholar 

  23. Jost, J., Li-Jost, X.: Calculus of Variations. Cambridge University, Cambridge (1998)

    MATH  Google Scholar 

  24. Li, Y., Sun, M.: Modeling and Verification of Component Connectors in Coq, vol. 113. Elsevier North-Holland Inc., New York (2015)

    Google Scholar 

  25. Ma, S., Shi, Z., Shao, Z., Guan, Y., Li, L., Li, Y.: Higher-order logic formalization of conformal geometric algebra and its application in verifying a robotic manipulation algorithm. Adv. Appl. Clifford Algebras 26(4), 1305–1330 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maggesi, M.: A formalization of metric spaces in HOL Light. J. Autom. Reason. 60(12), 1–18 (2017)

    MathSciNet  Google Scholar 

  27. Oberkampf, W., Trucano, T.: Verification and validation in computational fluid dynamics. Adv. Mech. 38(3), 209–272 (2007)

    Google Scholar 

  28. Risteska, A., Kokalanov, V., Gicev, V.: Application of fundamental lemma of variational calculus to the Bernoulli’s problem for the shortest time. In: Conference of Information Technology and Development of Education - ITRO 2015, pp. 159–164 (2015). http://www.tfzr.uns.ac.rs/itro/Zbornik%20ITRO%202015.pdf

  29. Rumyantsev, V.: Lagrange equations (in mechanics). Encycl. Math. (2011)

  30. Serrin, J.: On a fundamental theorem of the calculus of variations. Acta Math. 102(1–2), 1–22 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shi, Z., Wu, A., Yang, X., Guan, Y., Li, Y., Song, X.: Formal analysis of the kinematic Jacobian in screw theory. Form. Asp. Comput. 30(6), 739–757 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Slind, K., Norrish, M.: A brief overview of HOL4. In: Theorem Proving in Higher Order Logics, International Conference, Tphols 2008, Montreal, Canada, August 18–21, 2008. Proceedings, pp. 28–32 (2008)

  33. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, G., Guan, Y., Shi, Z., Zhang, Q., Li, X., Li, Y.: Formalization of symplectic geometry in HOL-Light. In: Sun, J., Sun, M. (eds.) Formal Methods and Software Engineering, pp. 270–283. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  35. Yang, X., Shi, Z., Wu, A., Guan, Y., Ye, S., Zhang, J.: High order logic formalization for Jacobian matrix of a serial robot. J. Chin. Comput. Syst. 37, 726–731 (2016)

    Google Scholar 

  36. Zhang, J., Wang, G., Shi, Z., Guan, Y., Li, Y.: Formalization of functional variation in HOL Light. J. Log. Algebraic Methods Program. 106, 29–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao, C., Li, S.: Formalization of fractional order PD control systems in HOL4. Theor. Comput. Sci. 706, 22–34 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhao, C.N., Li, S.S.: Formalization of fractional order PD control systems in HOL4. Theor. Comput. Sci. 706(1), 22–34 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the the National Key R&D Plan (2017YFB1303000), National Natural Science Foundation of China (61876111, 61572331, 61602325, 61877040) and Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds (025185305000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohui Wang or Zhiping Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Zhang, J., Wang, G. et al. Formalization of Euler–Lagrange Equation Set Based on Variational Calculus in HOL Light. J Autom Reasoning 65, 1–29 (2021). https://doi.org/10.1007/s10817-020-09549-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-020-09549-w

Keywords

Navigation