Skip to main content
Log in

Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl ring rotational barrier for neutral MP and gave results very similar to those of the HF/6-31G* method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM1:

Austin Model

SM5.4:

Solvent Model, parameterization 5.4

MP:

methylphenidate

RMP:

rigid methylphenidate

nMP:

neutral methylphenidate

pMP:

protonated methylphenidate

nRMP:

neutral rigid methylphenidate

pRMP:

protonated rigid methylphenidate

QSAR:

quantitative structure-activity relationships

RMSD :

root mean square deviation

RS:

random search

SAR:

struc-ture-activity relationships

CoMFA:

Comparative Molecular Field Analysis

DAT:

dopamine transporter

PES:

potential energy surface

HF/6-31G*:

Hartree-Fock 6-31G* basis set. For the RMP notations: cte (ring cistrans stereochemistry, phenyl group equatorial), tte (ring trans, trans stereochemistry, phenyl group equatorial), and cta (ring cis, trans stereochemistry, phenyl group axial).

References

  • M.J. Kuhar M.C. Ritz J.W. Boja (1991) TINS, 14 299

    Google Scholar 

  • Chen, N.H. and Reith, M.E.A., In Reith, M.E.A. (Ed.), Contemporary Neuroscience: Neurotransmitter Transporters: Structure, Function, and Regulation, Humana Press, Totowa, NJ, 1997, pp. 53–109.

  • S. Singh (2000) Chem. Rev., 100 925

    Google Scholar 

  • F.I. Carroll (2003) J. Med. Chem., 46 1775

    Google Scholar 

  • T. Prisinzano K.C. Rice M.H. Baumann R.B. Rothman (2004) Curr. Med. Chem.–Central Nervous System Agents, 4 47

    Google Scholar 

  • R.D. Cramer D.E. Patterson J.D. Bunce (1988) J.Am. Chem. Soc., 110 5959

    Google Scholar 

  • F.I. Carroll Y. Gao M.A. Rahman P. Abrams K. Parham A.H. Lewin J.W. Boja M.J. Kuhar (1991) J. Med. Chem., 34 2719

    Google Scholar 

  • M. Froimowitz (1993) J. Comput. Chem., 14 934

    Google Scholar 

  • F.I. Carroll S.W. Mascarella M.A. Kuzemko Y. Gao P. Abraham A.H. Lewin J.W. Boja M.J. Kuhar (1994) J. Med. Chem., 37 2865

    Google Scholar 

  • B. Yang J. Wright M.E. Eldefrawi S. Pou A.D. MacKerell SuffixJr. (1994) J. Am. Chem. Soc., 116 8722

    Google Scholar 

  • S.F. Lieske B. Yang M.E. Eldefrawi A.D. MacKerell SuffixJr. J. Wright (1998) J. Med. Chem., 41 864

    Google Scholar 

  • N. Zhu A. Harrison M.L. Trudell C.L. Klein-Stevens (1999) Struct. Chem., 10 91

    Google Scholar 

  • I.C. Muszynski L. Scapozza K.-A. Kovar G. Folkers (1999) Quant. Struct.-Act. Relat., 18 342

    Google Scholar 

  • B.T. Hoffman T. Kopajtic J.L. Katz A.H. Newman (2000) J. Med. Chem., 43 4151

    Google Scholar 

  • H.M.L. Davies V. Gilliatt L.A. Kuhn E. Saikali P. Ren P.S. Hammond G.J. Sexton S.R. Childers (2001) J. Med. Chem., 44 1509

    Google Scholar 

  • C.G. Zhan F. Zheng D.W. Landry (2003) J. Am. Chem. Soc., 125 2462

    Google Scholar 

  • S. Paula M.R. Tabet S.M. Keenan W.J. Welsh J. Ball (2003) J. Mol. Biol., 325 515

    Google Scholar 

  • S. Paula M.R. Tabet C.D. Farr A.D. Norman J. Ball (2004) J. Med. Chem., 47 133

    Google Scholar 

  • S.S. Kulkarni P. Grundt T. Kopajtic J.L. Katz A.H. Newman (2004) J. Med. Chem., 47 3388

    Google Scholar 

  • H. Yuan A.P. Kozikowski P.A. Petukhov (2004) J. Med. Chem., 47 6137

    Google Scholar 

  • A.H. Newman S. Izenwasser M.J. Robarge R.H. Kline (1999) J. Med. Chem., 42 3502

    Google Scholar 

  • M.J. Robarge G.E. Agoston S. Izenwasser T. Kopajtic C. George J.L. Katz A.H. Newman (2000) J. Med. Chem., 43 1085

    Google Scholar 

  • M. Froimowitz K.-M. Wu J. Rodrigo C. George (2000) J. Comput.-Aided Mol. Des., 14 135

    Google Scholar 

  • M. Froimowitz C. George (1998) J. Chem. Inf. Comp. Sci., 38 506

    Google Scholar 

  • S.S. Kulkarni A.H. Newman W.J. Houlihan (2002) J. Med. Chem., 45 4119

    Google Scholar 

  • P. Benedetti R. Mannhold G. Cruciani M. Pastor (2002) J. Med. Chem., 45 1577

    Google Scholar 

  • S. Wang S. Sakamuri I.J. Enyedy A.P. Kozikowski W.A. Zaman K.M. Johnson (2001) Bioorg. Med. Chem. Lett., 9 1753

    Google Scholar 

  • K.S. Patrick R.W. Caldwell R.M. Ferris G.R. Breese (1987) J. Pharm. Expt. Ther., 241 152

    Google Scholar 

  • N.D. Volkow Y.-S. Ding J.S. Fowler G.-J. Wang J. Logan S.J. Gatley S. Dewey C. Ashby J. Liebermann R. Hitzemann A.P. Wolf (1995) Arch. Gen. Psych., 52 456

    Google Scholar 

  • Y.-S. Ding J.S. Fowler N.D. Volkow J. Logan S.J. Gatley Y. Sugano (1995) J. Nucl. Med., 36 2298

    Google Scholar 

  • S.J. Gatley Y.-S. Ding N.D. Volkow R. Chen Y. Sugano J.S. Fowler (1995) Eur. J. Pharmacol., 281 141

    Google Scholar 

  • N.D. Volkow Y.-S. Ding J.S. Fowler G.-J. Wang J. Logan S.J. Gatley D.J. Schlyer N. Pappas (1995) J. Nucl. Med., 36 2162

    Google Scholar 

  • D.L. Thai M.T. Sapko C.T. Reiter D.E. Bierer J.M. Perel (1998) J. Med. Chem., 41 591

    Google Scholar 

  • N.D. Volkow G.-J. Wang J.S. Fowler S.J. Gatley J. Logan Y.-S. Ding S.L. Dewey R. Hitzemann A.N. Gifford N.R. Pappas (1999) J. Pharm. Expt. Ther., 288 14

    Google Scholar 

  • N.D. Volkow J.S. Fowler S.J. Gatley S.L. Dewey G.J. Wang J. Logan Y.S. Ding D. Franceschi A. Gifford A. Morgan N. Pappas P. King (1999) Synapse, 31 59

    Google Scholar 

  • Volkow, N.D., Wang, G.-J., Fowler, J.S., Fischman, M., Foltin, R., Abumrad, N.N., Gatley, S.J., Logan, E., Wong, C., Gifford, A., Ding, Y.-S., Hitzemann, R. and Pappas, N., Life Sci., 65 (1999) PL7.

  • N.D. Volkow J.S. Fowler G.-J. Wang Y.-S. Ding S.J. Gatley (2002) Eur. Neuropsychopharmacol., 12 557

    Google Scholar 

  • N.D. Volkow G.-J. Wang J.S. Fowler J. Logan D. Franceschi L. Maynard Y.-S. Ding S.J. Gatley A. Gifford W. Zhu J.M. Swanson (2002) Synapse, 43 181

    Google Scholar 

  • P. Seeman B.K. Madras (2002) Behavioral Brain Res., 130 79

    Google Scholar 

  • J.M. Swanson N.D. Volkow (2003) Neurosci. Biobehavioral Rev., 27 615

    Google Scholar 

  • B.E. Leonard D. McCartan J. White D.J. King (2004) Human Psychopharmacol., 19 151

    Google Scholar 

  • M.M. Schweri P. Skolnick M.F. Rafferty K.C. Rice A.J. Janowsky S.M. Paul (1985) J. Neurochem., 45 1062

    Google Scholar 

  • M.M. Schweri (1990) Neuropharmacology, 29 901

    Google Scholar 

  • M.M. Schweri (1994) Synapse, 16 188

    Google Scholar 

  • H.M. Deutsch Q. Shi E. Gruszecka-Kowalik M. Schweri (1996) J. Med. Chem., 39 1201

    Google Scholar 

  • M. Froimowitz H.M. Deutsch Q. Shi K.-M. Wu R. Glaser I. Adin C. George M.M. Schweri (1997) Bioorg. Med. Chem. Lett., 7 1213

    Google Scholar 

  • R. Glaser I. Adin D. Shiftan Q. Shi H.M. Deutsch G. George K.-M. Wu M. Froimowitz (1998) J. Org. Chem., 63 1785

    Google Scholar 

  • H.M. Deutsch (1998) Med. Chem. Res., 8 91

    Google Scholar 

  • M. Froimowitz K.-M. Wu C. George D. VanDerveer Q. Shi. H.M. Deutsch (1998) Struct. Chem., 4 295

    Google Scholar 

  • H.M. Deutsch T. Dunn X. Ye M.M. Schweri (1999) Synth. Med. Chem. Res., 9 213

    Google Scholar 

  • H.K. Wayment H. Deutsch M.M. Schweri J.O. Schenk (1999) J. Neurochem., 72 1266

    Google Scholar 

  • H.M. Deutsch X. Ye Q. Shi Z. Liu M.M. Schweri (2001) Eur. J. Med. Chem., 36 303

    Google Scholar 

  • M.M. Schweri H.M. Deutsch A.T. Massey S.G. Holtzman (2002) J. Pharm. Expt. Ther., 301 527

    Google Scholar 

  • Deutsch, H.M., Kim, D.I., Holtzman, S.G., Schweri, M.M. and Spealman, R.D., The Synthesis and Evaluation of New Methylphenidates: Restricted Rotation Analogs, Preliminary results presented at the College on the Problems of Drug Dependence, 64th Annual Meeting, June 9--13, Quebec City, Canada, 2002.

  • P.C. Meltzer P. Wang P. Blundell B.K. Madras (2003) J. Med. Chem., 46 1538

    Google Scholar 

  • H.M.L. Davies D.W. Hopper T. Hansen Q. Liu S.R. Childers (2004) Bioorg. Med. Chem., 14 1799

    Google Scholar 

  • M. Froimowitz K.S. Patrick V. Cody (1995) Pharm. Res., 12 1430

    Google Scholar 

  • M.C. Nicklaus S. Wang J. Driscoll G.W.A. Milne (1995) Bioorg. Med. Chem., 3 411

    Google Scholar 

  • M. Vieth J.D. Hirst I. Brooks C.L. (1998) J. Comput.-Aided Mol. Des., 12 563

    Google Scholar 

  • J. Boström P.-O. Norrby T. Liljefors (1998) J. Comput.-Aided Mol. Des., 12 383

    Google Scholar 

  • A.K. Debnath (1999) J. Med. Chem., 42 249

    Google Scholar 

  • E. Perola P.S. Charifson (2004) J. Med. Chem., 47 2499

    Google Scholar 

  • Kim, K.H., Greco, G. and Novellino, E., In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.), 3D QSAR in Drug Design: Recent Advances, Kluwer Academic, Dordrecht, 1998, pp. 257–315.

  • F. Guarnieri H. Weinstein (1996) J. Am. Chem. Soc., 118 5580

    Google Scholar 

  • Hopfinger, A.J. and Tokarski, J.S., In Charifson, P.S. (Ed.), Practical Application of Computer-Aided Drug Design, Marcel Dekker, New York, 1997, pp. 105–164.

  • J. Barnett-Norris F. Guarnieri D.P. Hurst P.H. Reggio (1998) J. Med. Chem., 41 4861

    Google Scholar 

  • J. Barnett-Norris D.P. Hurst D.L. Lynch F. Guarnieri A. Makriyannis P.H. Reggio (2002) J. Med. Chem., 45 3649

    Google Scholar 

  • P.A. Greenidge S.A.M. Merette R. Beck G. Dodson C.A. Goodwin M.F. Scully J. Spencer J. Weiser J.J. Deadman (2003) J. Med. Chem., 46 1293

    Google Scholar 

  • D. Bernard A. Coop A.D. MacKerell SuffixJr. (2003) J. Am. Chem. Soc., 125 3101

    Google Scholar 

  • M. Clark R.D. Cramer N. Opdenbosch ParticleVan (1989) J. Comput. Chem., 10 982

    Google Scholar 

  • M.J.S. Dewar Y. Yate-Ching (1990) Inorg. Chem., 29 3881

    Google Scholar 

  • M.J.S. Dewar E.G. Zoebisch (1988) J. Mol. Struct. (Theochem), 49 1

    Google Scholar 

  • M.J.S. Dewar E.G. Zoebisch E.E. Healy J.J.P. Stewart (1985) J. Am. Chem. Soc., 107 3902

    Google Scholar 

  • C.C. Chambers G.D. Hawkins C.J. Cramer D.G. Truhlar (1996) J. Phys. Chem., 100 16385

    Google Scholar 

  • W.J. Hehre R. Ditchfield J.A. Pople (1972) J. Chem. Phys., 56 2257

    Google Scholar 

  • J.L. Berfield L.C. Wang M.E.A. Reith (1999) J. Biol. Chem., 274 4876

    Google Scholar 

  • C. Xu M.E.A. Reith (1996) J. Pharm. Expt. Ther., 278 1340

    Google Scholar 

  • P.J. Stephens F.J. Devlin C.F. Chabalowski M.J. Frisch (1994) J. Phys. Chem., 98 11623

    Google Scholar 

  • M. Saunders (1987) J. Am. Chem. Soc., 109 3150

    Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, Jr., J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R.., Menucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Rega, N., Salvador, P., Dannenberg, J.J., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T.A., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S. and Pople, J.A., Gaussian 98, Revision A.11.3, Gaussian 98, Revision A.11.3, Gaussian Inc., Wallingford, CT (2002).

  • M. Cossi V.,R. Barone C.J. Tomasi (1996) Chem. Phys. Lett., 255 327

    Google Scholar 

  • M.T. Cances V. Mennucci J. Tomasi (1997) J. Chem. Phys., 107 3032

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Venanzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, K.M., Skawinski, W.J., Misra, M. et al. Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods. J Comput Aided Mol Des 18, 719–738 (2004). https://doi.org/10.1007/s10822-004-7610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-004-7610-1

Keywords

Navigation