Skip to main content

Advertisement

Log in

Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Inter-residue contacts map prediction is one of the most important intermediate steps to the protein folding problem. In this paper, we focus on the problem of protein inter-residue contacts map prediction based on neural network technique. Firstly, we use a genetic algorithm (GA) to optimize the radial basis function widths and hidden centers of a radial basis function neural network (RBFNN), then a novel binary encoding scheme is employed to train the network for the purpose of learning and predicting the inter-residue contacts patterns of protein sequences got from the protein data bank (PDB). The experimental evidence indicates the utility of our proposed encoding strategy and GA optimized RBFNN. Moreover, the simulation results demonstrate that the network got a better performance for these proteins, whose residue length falls into the area of (100, 300), and the predicted accuracy with a contact threshold of 7 Å scores higher than the other 3 values with 5, 6, and 8 Å .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Park M. Vendruscolo E. Domany (2000) ArticleTitleProteins Struct Funct. Genet. 40 237 Occurrence Handle1:CAS:528:DC%2BD3cXkt1ahtro%3D

    CAS  Google Scholar 

  2. M. Vendruscolo R. Najmanovich E. Domany (2000) ArticleTitleProteins Struct Funct. Genet. 38 134 Occurrence Handle1:CAS:528:DC%2BD3cXks1Gmtg%3D%3D

    CAS  Google Scholar 

  3. P. Fariselli O. Olmea A. Valencia R. Casadio (2001) Protein Eng. 14 IssueID11 835 Occurrence Handle10.1093/protein/14.11.835 Occurrence Handle1:CAS:528:DC%2BD38XjtVentA%3D%3D Occurrence Handle11742102

    Article  CAS  PubMed  Google Scholar 

  4. Hamilton, M., Burrage, K., Raga, M.A., Hubor, T., Protein contact prediction using patterns of correlation, http://foo.maths.uq.edu.au/˜nick/Protein/Dataset/protein contact.pdf

  5. Hu, J., Shen, X., Shao, Y., Bystroff, C., Zaki, M. J., Mining Protein Contact Maps, http://www.cs.rpi.edu/˜zaki/BIOKDD02/02-hu.pdf

  6. M.S. Singer G. Vriend R.P. Bywater (2002) Protein Eng. 15 IssueID9 721 Occurrence Handle10.1093/protein/15.9.721 Occurrence Handle1:CAS:528:DC%2BD38XptlOhtLY%3D Occurrence Handle12456870

    Article  CAS  PubMed  Google Scholar 

  7. S. Fairchild R. Pachter R. Perrin (1997) Math J. 5 IssueID4 64

    Google Scholar 

  8. A.J. Ketterman P. Prommeenate C. Boonchauy U. Chanama S. Leetachewa N. Plomtet L. Prapanthadasa (2001) Biochem. Mol. Biol. 31 65 Occurrence Handle10.1016/S0965-1748(00)00106-5 Occurrence Handle1:CAS:528:DC%2BD3cXotlCgtLw%3D

    Article  CAS  Google Scholar 

  9. Zhang, G.Z., Huang, D.S., Wang, H.Q., In the Proceedings of the 2004 International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Montrġl, QuĢec, Canada, May 17–21, 2004, pp. V573–576

  10. Zhang, G.-Z., Huang, D.S., In the Proceedings of the 2004 IEEE Congress on Evolutionary Computation, Portland, Oregon, Vol. 1, June 19–23, 2004, pp. 1015–1019

  11. E.L.L. Sonnhammer J.C. Wootton (1998) ArticleTitleJ. Mol Graph. Model 16 1 Occurrence Handle10.1016/S1093-3263(98)00009-6 Occurrence Handle1:CAS:528:DyaK1cXmsVynurw%3D

    Article  CAS  Google Scholar 

  12. L. Mirny E. Domany (1996) Proteins 26 319 Occurrence Handle10.1002/(SICI)1097-0134(199612)26:4<391::AID-PROT3>3.0.CO;2-F

    Article  Google Scholar 

  13. P. Fariselli O. Olmea A. Valencia R. Casadio (2001) Proteins (Suppl)5 157 Occurrence Handle10.1002/prot.1173

    Article  Google Scholar 

  14. P. Fariselli R. Casadio (1999) Protein Eng 12 15 Occurrence Handle10.1093/protein/12.1.15 Occurrence Handle1:CAS:528:DyaK1MXht1Kgsrk%3D Occurrence Handle10065706

    Article  CAS  PubMed  Google Scholar 

  15. Z.O. Wang T. Zhu (2000) Neural Networks 13 545 Occurrence Handle10.1016/S0893-6080(00)00029-0 Occurrence Handle1:STN:280:DC%2BD3M%2FkvVGhtQ%3D%3D Occurrence Handle10946399

    Article  CAS  PubMed  Google Scholar 

  16. C.A. Orengo A.D. Michie S. Jones D.T. Jones M.B. Swindells J.M. Thornton (1997) Structure 5 IssueID8 1093 Occurrence Handle10.1016/S0969-2126(97)00260-8 Occurrence Handle1:CAS:528:DyaK2sXmt1Wgs74%3D Occurrence Handle9309224

    Article  CAS  PubMed  Google Scholar 

  17. Belloir, F., Fache, A., Billat, A. In the Proceedings of the European Symposiun on Artificial Neural Networks, Bruges (Belgium), D-Facto publicl., ISBN 2-600049-9-X, April 21–23 1999, pp. 399–404

  18. De Jong, K., Learning with Genetic Algorithms: An Overview, Machine Learning Vol. 3, Kluwer Academic Publishers, 1998

  19. S.-B. Cho (1999) Fuzzy Sets Syst. 103 339 Occurrence Handle10.1016/S0165-0114(98)00232-2

    Article  Google Scholar 

  20. L. Guo D.S. Huang W. Zhao (2003) IEE Electronics Lett. 39 IssueID22 1600 Occurrence Handle10.1049/el:20031021

    Article  Google Scholar 

  21. Guo, L., Huang, D.S., Zhao W.-B., In the Proceedings of the International Joint Conference on Neural Networks (IJCNN2003), Portland, Oregon, July 20–24, 2003, pp. 3213–3217

  22. Zhang G.-Z. Huang D.S. (2004) The 2004 International Joint Conference on Neural Networks (IJCNN2004) Budapest Hungary 25–29

    Google Scholar 

  23. H.M. Berman J. Westbrook Z. Feng G. Gilliland T.N. Bhat Weissig H. Shindyalov I.N. P.E. Bourne (2000) Nucleic Acids Res. 28 235 Occurrence Handle10.1093/nar/28.1.235 Occurrence Handle1:CAS:528:DC%2BD3cXhvVKjt7w%3D Occurrence Handle10592235

    Article  CAS  PubMed  Google Scholar 

  24. W. Kabsch C. Sander (1983) Biopolymers 2577 22

    Google Scholar 

  25. J. Guo H. Chen Z. Sun Y. Lin (2004) ArticleTitleProteins Struct Funct. Bioinform. 54 738 Occurrence Handle10.1002/prot.10634 Occurrence Handle1:CAS:528:DC%2BD2cXitVGgur8%3D

    Article  CAS  Google Scholar 

  26. G. Benedetti S. Morosetti (1995) Biophys Chem 55 253 Occurrence Handle10.1016/0301-4622(94)00130-C Occurrence Handle1:CAS:528:DyaK2MXmsFGnurc%3D Occurrence Handle7542936

    Article  CAS  PubMed  Google Scholar 

  27. H. Yu W. Liang (2001) ArticleTitleComput Indus. Eng. 39 337 Occurrence Handle10.1016/S0360-8352(01)00010-9

    Article  Google Scholar 

  28. D.S. Huang S.D. Ma (1999) J. Intel Syst 9 IssueID1 1

    Google Scholar 

  29. F.M.G. Pearl D. Lee J.E. Bray I. Sillitoe A.E. Todd A.P. Harrison J.M. Thornton C.A. Orengo (2000) Nucleic Acids Res 28 IssueID1 277 Occurrence Handle10.1093/nar/28.1.277 Occurrence Handle1:CAS:528:DC%2BD3cXhvVKjtL0%3D Occurrence Handle10592246

    Article  CAS  PubMed  Google Scholar 

  30. D.S. Huang (1999) Int. J Pattern Recog. Artif. Intel. 13 IssueID6 945 Occurrence Handle10.1142/S0218001499000525

    Article  Google Scholar 

  31. S. Sen (2003) Biophys Chem. 103 35 Occurrence Handle10.1016/S0301-4622(02)00230-2 Occurrence Handle1:CAS:528:DC%2BD38XpslSmtL4%3D Occurrence Handle12504253

    Article  CAS  PubMed  Google Scholar 

  32. T.S. Kumarevel M.M. Gromiba M.N. Ponnuswamy (2000) Biophys Chem. 88 81 Occurrence Handle10.1016/S0301-4622(00)00201-5 Occurrence Handle1:CAS:528:DC%2BD3cXotVCrs74%3D Occurrence Handle11152278

    Article  CAS  PubMed  Google Scholar 

  33. L.X. Zhang J. Li Z. Jiang A. Xia (2003) Polymer. 44 1751 Occurrence Handle10.1016/S0032-3861(03)00021-1 Occurrence Handle1:CAS:528:DC%2BD3sXhtFCmtLo%3D

    Article  CAS  Google Scholar 

  34. M. Michael Gromiha J. Selvaraj S. (2001) Mol Biol. 310 27 Occurrence Handle10.1006/jmbi.2001.4775

    Article  Google Scholar 

  35. M.S. Singer G. Vriend R.P. Bywter (2002) Protein Eng., 15 721

    Google Scholar 

  36. K.-H. Park J.-E. Suk R. Jacobsen W.R. Gray J.M. Mcintosh K.-H. Han (2001) J. Biol Chem. 276 IssueID52 49028 Occurrence Handle10.1074/jbc.M107798200 Occurrence Handle1:CAS:528:DC%2BD38Xktlensg%3D%3D Occurrence Handle11641403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, GZ., Huang, DS. Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme. J Comput Aided Mol Des 18, 797–810 (2004). https://doi.org/10.1007/s10822-005-0578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-0578-7

Keywords

Navigation