Summary
The cytochrome P450 (CYP) enzyme superfamily plays a major role in the metabolism of commercially available drugs. Inhibition of these enzymes by a drug may result in a plasma level increase of another drug, thus leading to unwanted drug–drug interactions when two or more drugs are coadministered. Therefore, fast and reliable in silico methods predicting CYP inhibition from calculated molecular properties are an important tool which can be applied to assess both already synthesized as well as virtual compounds. We have studied the performance of support vector machines (SVMs) to classify compounds according to their potency to inhibit CYP3A4. The data set for model generation consists of more than 1300 structural diverse drug-like research molecules which were divided into training and test sets. The predictive power of SVMs crucially depends on a careful selection of parameters specifying the kernel function and the penalty for misclassifications. In this study we have investigated a procedure to identify a valid set of SVM parameters which is based on a sampling of the parameter space on a regular grid. From this set of parameters, either single SVMs or SVM committees were trained to distinguish between strong and weak inhibitors or to achieve a more realistic three-class assignment, with one class representing medium inhibitors. This workflow was studied for several kernel functions and descriptor sets. All SVM models performed significantly better than PLS-DA models which were generated from the corresponding descriptor sets. As a very promising result, simple two-dimensional (2D) descriptors yield a three-class model which correctly classifies more than 70% of the test set. Our work illustrates that SVMs used in combination with simple 2D descriptors provide a very effective and reliable tool which allows a fast assessment of CYP3A4 inhibition potency in an early in silico filtering process.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- ADME:
-
absorption, distribution, metabolism and excretion
- CYP:
-
cytochrome P450
- PLS:
-
partial least squares
- DA:
-
discriminant analysis
- SVM(s):
-
support vector machine(s)
- 3D:
-
three-dimensional
- 2D:
-
two-dimensional
- QM:
-
quantum-mechanical
- RBF:
-
radial basis function.
References
D.F. Lewis (2003) Curr. Med. Chem. 10 1955 Occurrence Handle10.2174/0929867033456855 Occurrence Handle1:CAS:528:DC%2BD3sXnslyqtbo%3D Occurrence Handle12871098
P.B. Danielson (2002) Curr. Drug Metab. 3 561 Occurrence Handle10.2174/1389200023337054 Occurrence Handle1:CAS:528:DC%2BD38XoslKiu7s%3D Occurrence Handle12369887
S. Rendic F.J. Di Carlo (1997) Drug Metab. Rev. 29 413 Occurrence Handle1:CAS:528:DyaK2sXkt1Onur8%3D Occurrence Handle9187528
S.A. Wrighton E.G. Schuetz K.E. Thummel D.D. Shen K.R. Korzekwa P.B. Watkins (2000) Drug Metab. Rev. 32 339 Occurrence Handle10.1081/DMR-100102338 Occurrence Handle1:CAS:528:DC%2BD3MXjsFCmsw%3D%3D Occurrence Handle11139133
V.P. Miller D.M. Stresser A.P. Blanchard S. Turner C.L. Crespi (2000) Ann. NewYork Acad. Sci. 919 26 Occurrence Handle1:CAS:528:DC%2BD3cXosFSktL0%3D
K.M. Jenkins R. Angeles M.T. Quintos R. Xu D.B. Kassel R.A. Rourick (2004) J. Pharm. Biomed. Anal. 34 989 Occurrence Handle10.1016/j.jpba.2003.08.001 Occurrence Handle1:CAS:528:DC%2BD2cXhslWmtro%3D Occurrence Handle15019033
H.-J. Böhm G. Schneider (2000) Virtual Screening for Bioactive Molecules Wiley-VCH New York
G.A. Schoch J.K. Yano M.R. Wester K.J. Griffin C.D. Stout E.F. Johnson (2004) J. Biol. Chem. 279 9497 Occurrence Handle10.1074/jbc.M312516200 Occurrence Handle1:CAS:528:DC%2BD2cXhs1Omt78%3D Occurrence Handle14676196
G.D. Szklarz J.R. Halpert (1998) Drug Metab Dispos. 26 1179 Occurrence Handle1:CAS:528:DyaK1MXhvFCqtg%3D%3D Occurrence Handle9860924
M.R. Wester E.F. Johnson C. Marques-Soares P.M. Dansette D. Mansuy C.D. Stout (2003) Biochemistry 42 6370 Occurrence Handle10.1021/bi0273922 Occurrence Handle1:CAS:528:DC%2BD3sXjsVOhurs%3D Occurrence Handle12767218
P.A. Williams J. Cosme A. Ward H.C. Angove D.M. Vinković H. Jhoti (2003) Nature 424 464 Occurrence Handle10.1038/nature01862 Occurrence Handle1:CAS:528:DC%2BD3sXls1aqtrk%3D Occurrence Handle12861225
P.A. Williams J. Cosme D.M. Vinković A. Ward H.C. Angove P.J. Day C. Vonrhein I.J. Tickle H. Jhoti (2004) Science 305 683 Occurrence Handle10.1126/science.1099736 Occurrence Handle1:CAS:528:DC%2BD2cXmtFWqsrY%3D Occurrence Handle15256616
M.R. Wester J.K. Yano G.A. Schoch C. Yang K.J. Griffin C.D. Stout E.F. Johnson (2004) J. Biol. Chem. 279 35630 Occurrence Handle10.1074/jbc.M405427200 Occurrence Handle1:CAS:528:DC%2BD2cXmsl2hsLs%3D Occurrence Handle15181000
J.K. Yano M.R. Wester G.A. Schoch K.J. Griffin C.D. Stout E.F. Johnson (2004) J. Biol. Chem. 279 38091 Occurrence Handle10.1074/jbc.C400293200 Occurrence Handle1:CAS:528:DC%2BD2cXnt1Oqs7c%3D Occurrence Handle15258162
S. Ekins G. Bravi J.H. Wikel S.A. Wrighton (1999) J.␣Pharmacol. Exp. Ther. 291 424 Occurrence Handle1:CAS:528:DyaK1MXmtlaktrc%3D Occurrence Handle10490933
S. Ekins D.M. Stresser J.A. Williams (2003) Trends Pharmacol. Sci. 24 161 Occurrence Handle10.1016/S0165-6147(03)00049-X Occurrence Handle1:CAS:528:DC%2BD3sXjtFeqt7c%3D Occurrence Handle12707001
S. Ekins G. Bravi S. Binkley J.S. Gillespie B.J. Ring J.H. Wikel S.A. Wrighton (1999) J. Pharmacol. Exp. Ther. 290 429 Occurrence Handle1:CAS:528:DyaK1MXktFKit7s%3D Occurrence Handle10381809
G.N. Kumar Surapaneni (2001) Med. Res. Rev. 21 397 Occurrence Handle10.1002/med.1016 Occurrence Handle1:CAS:528:DC%2BD3MXmsFCmtbg%3D Occurrence Handle11579440
G.D. Szklarz J.R. Halpert (1997) J. Comput.-Aided Mol. Des. 11 265 Occurrence Handle10.1023/A:1007956612081 Occurrence Handle1:CAS:528:DyaK2sXlsVCrsr0%3D Occurrence Handle9263853
M.L. Schrag L.C. Wienkers (2001) Arch. Biochem. Biophys. 391 49 Occurrence Handle10.1006/abbi.2001.2401 Occurrence Handle1:CAS:528:DC%2BD3MXksVKjsb4%3D Occurrence Handle11414684
J. Zuegge U. Fechner O. Roche N.J. Parrott O. Engkvist G. Schneider (2002) Quant. Struct. Act. Relat. 21 249 Occurrence Handle10.1002/1521-3838(200208)21:3<249::AID-QSAR249>3.0.CO;2-S Occurrence Handle1:CAS:528:DC%2BD38XmvFCqsb4%3D
L. Molnár G.M. Keseru (2002) Bioorg. Med. Chem. Lett. 12 419 Occurrence Handle10.1016/S0960-894X(01)00771-5 Occurrence Handle11814811
S. Ekins J. Berbaum R.K. Harrison (2003) Drug Metab. Dispos. 31 1077 Occurrence Handle10.1124/dmd.31.9.1077 Occurrence Handle1:CAS:528:DC%2BD3sXmslKlurw%3D Occurrence Handle12920160
C. Merkwirth H. Mauser T. Schulz-Gasch O. Roche M. Stahl T. Lengauer (2004) J. Chem. Inf. Comput. Sci. 44 1971 Occurrence Handle10.1021/ci049850e Occurrence Handle1:CAS:528:DC%2BD2cXotlalsro%3D Occurrence Handle15554666
V. Vapnik (1995) The Nature of Statistical Learning Theory Springer New York
Y. Lee C.K. Lee (2003) Bioinformatics 19 1132 Occurrence Handle10.1093/bioinformatics/btg102 Occurrence Handle1:CAS:528:DC%2BD3sXks1Wrtbo%3D Occurrence Handle12801874
E. Byvatov U. Fechner J. Sadowski G. Schneider (2003) J. Chem. Inf. Comput. Sci. 43 1882 Occurrence Handle10.1021/ci0341161 Occurrence Handle1:CAS:528:DC%2BD3sXns1Wmt74%3D Occurrence Handle14632437
M.K. Warmuth J. Liao G. Rätsch M. Mathieson S. Putta C. Lemmen (2003) J. Chem. Inf. Comput. Sci. 43 667 Occurrence Handle10.1021/ci025620t Occurrence Handle1:CAS:528:DC%2BD3sXhtVOjtbk%3D Occurrence Handle12653536
M.W.B. Trotter S.B. Holden (2003) Quant. Struct. Act. Relat. 22 533 Occurrence Handle1:CAS:528:DC%2BD3sXmtFeksbw%3D
V.V. Zernov K.V. Balakin A.A. Ivaschenko N.P. Savchuk I.V. Pletnev (2003) J. Chem. Inf. Comput. Sci. 43 2048 Occurrence Handle10.1021/ci0340916 Occurrence Handle1:CAS:528:DC%2BD3sXotFSht7w%3D Occurrence Handle14632457
P. Lind T. Maltseva (2003) J. Chem. Inf. Comput. Sci. 43 1855 Occurrence Handle10.1021/ci034107s Occurrence Handle1:CAS:528:DC%2BD3sXotFCgt70%3D Occurrence Handle14632433
M.J. Sorich J.O. Miners R.A. McKinnon D.A. Winkler F.R. Burden P.A. Smith (2003) J. Chem. Inf. Comput. Sci. 43 2019 Occurrence Handle10.1021/ci034108k Occurrence Handle1:CAS:528:DC%2BD3sXnt1Ohsbs%3D Occurrence Handle14632453
C. Cortes V. Vapnik (1995) Mach. Learn. 20 273
C.-W. Hsu C.-J. Lin (2002) IEEE Transactions on Neural Networks 13 415 Occurrence Handle10.1109/TNN.2002.1000139
G.C. Moody S.J. Griffin A.N. Mather D.F. McGinnity R.J. Riley (1999) Xenobiotica 29 53 Occurrence Handle10.1080/004982599238812 Occurrence Handle1:CAS:528:DyaK1MXotlOjsg%3D%3D Occurrence Handle10078840
These descriptors are calculated by a Boehringer Ingelheim in-house software package (propty, developed by K.M. Hasselbach)
Molecular Operating Environment Release 2003.2, Chemical Computing Group, Montreal, Canada, 2003
VolSurf 3.0.11, Molecular Discovery Ltd., London, UK, 2004
G. Cruciani M. Pastor W. Guba (2000) Eur. J. Pharm. Sci. 11 IssueIDSuppl 2 S29 Occurrence Handle10.1016/S0928-0987(00)00162-7 Occurrence Handle1:CAS:528:DC%2BD3cXntF2gtbo%3D Occurrence Handle11033425
CORINA 3.1, Molecular Networks GmbH, Erlangen, Germany, 2004
M.J.S. Dewar E.G. Zoebisch E.F. Healy J.J.P. Stewart (1985) J. Am. Chem. Soc. 107 3902 Occurrence Handle10.1021/ja00299a024
VAMP 8.1, University of Erlangen, Erlangen, Germany (This version is provided as part of Materials Studio 2.2.1 by Accelrys, Inc.), 2003
A. Golbraikh M. Shen Z. Xiao Y.D. Xiao K.H. Lee A. Tropsha (2003) J. Comput.-Aided Mol. Des. 17 241 Occurrence Handle10.1023/A:1025386326946 Occurrence Handle1:CAS:528:DC%2BD3sXmsVGnsL0%3D Occurrence Handle13677490
R.W. Kennard L.A. Stone (1969) Technometrics 11 137
L. Eriksson E. Johansson F. Lindgren M. Sjøstrøm S. Wold (2002) J. Comput.-Aided Mol. Des. 16 711 Occurrence Handle10.1023/A:1022450725545 Occurrence Handle1:CAS:528:DC%2BD3sXht1WksbY%3D Occurrence Handle12650589
L. Eriksson T. Arnhold B. Beck T. Fox E. Johansson J.M. Kriegl (2004) J. Chemometrics 18 188 Occurrence Handle10.1002/cem.854 Occurrence Handle1:CAS:528:DC%2BD2cXnt1WgtrY%3D
SIMCA-P+ 10, Umetrics AB, Umeå, Sweden, 2004
S. Wold (1978) Technometrics 20 397
LIBSVM 2.5 National Taiwan University, 2003; http://www.csie.ntu.edu.tw/∼ ∼cjlin/libsvm/index.html
S.S. Keerthi C.-J. Lin (2003) Neural Comput. 15 1667 Occurrence Handle10.1162/089976603321891855 Occurrence Handle12816571
P. Baldi S. Brunak Y. Chauvin C.A. Andersen H. Nielsen (2000) Bioinformatics 16 412 Occurrence Handle10.1093/bioinformatics/16.5.412 Occurrence Handle1:CAS:528:DC%2BD3cXlvVKqt74%3D Occurrence Handle10871264
B.W. Matthews (1975) Biochim. Biophys. Acta 405 442 Occurrence Handle1:CAS:528:DyaE2MXlslCksbk%3D Occurrence Handle1180967
C. M. Bishop (2004) Br. J. Clin. Pharmacol. 57 473 Occurrence Handle10.1111/j.1365-2125.2003.02041.x Occurrence Handle15025746
E. Byvatov G. Schneider (2004) J. Chem. Inf. Comput. Sci. 44 993 Occurrence Handle10.1021/ci0342876 Occurrence Handle1:CAS:528:DC%2BD2cXhslajtrs%3D Occurrence Handle15154767
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kriegl, J.M., Arnhold, T., Beck, B. et al. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des 19, 189–201 (2005). https://doi.org/10.1007/s10822-005-3785-3
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10822-005-3785-3