Skip to main content
Log in

Modelling of carbohydrate–aromatic interactions: ab initio energetics and force field performance

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Aromatic amino acid residues are often present in carbohydrate-binding sites of proteins. These binding sites are characterized by a placement of a carbohydrate moiety in a stacking orientation to an aromatic ring. This arrangement is an example of CH/π interactions. Ab initio interaction energies for 20 carbohydrate–aromatic complexes taken from 6 selected ultra-high resolution X-ray structures of glycosidases and carbohydrate-binding proteins were calculated. All interaction energies of a pyranose moiety with a side chain of an aromatic residue were calculated as attractive with interaction energy ranging from −2.8 to −12.3 kcal/mol as calculated at the MP2/6-311+G(d) level. Strong attractive interactions were observed for a wide range of orientations of carbohydrate and aromatic ring as present in selected X-ray structures. The most attractive interaction was associated with apparent combination of CH/π interactions and classical H-bonds. The failure of Hartree–Fock method (interaction energies from +1.0 to −6.9 kcal/mol) can be explained by a dispersion nature of a majority of the studied complexes. We also present a comparison of interaction energies calculated at the MP2 level with those calculated using molecular mechanics force fields (OPLS, GROMOS, CSFF/CHARMM, CHEAT/CHARMM, Glycam/AMBER, MM2 and MM3). For a majority of force fields there was a strong correlation with MP2 values. RMSD between MP2 and force field values were 1.0 for CSFF/CHARMM, 1.2 for Glycam/AMBER, 1.2 for GROMOS, 1.3 for MM3, 1.4 for MM2, 1.5 for OPLS and to 2.3 for CHEAT/CHARMM (in kcal/mol). These results show that molecular mechanics approximates interaction energies very well and support an application of molecular mechanics methods in the area of glycochemistry and glycobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMBER:

assisted model building with energy refinement

B3LYP:

Becke–Slater-HF 3-term exchange and Lee–Yang–Parr correlation hybrid functional

BSSE:

basis set superposition error

CBM:

carbohydrate-binding module

CBS:

complete basis set

CCSD(T):

coupled cluster with single, double and perturbative triple excitation

CHARMM:

chemistry at Harvard molecular mechanics

CHEAT:

carbohydrate hydroxyl groups represented by extended atoms

CSFF:

carbohydrate solution force field

DFT:

density functional theory

GROMOS:

Groningen molecular simulation

HF:

Hartree–Fock␣method

MM2:

molecular mechanics version 2

MM3:

molecular mechanics version 3

MP2:

Møller–Plesset perturbation theory; second order

OPLS:

optimized potentials for liquid simulations

PDB:

protein data bank

RMSD:

root mean square deviation

References

  1. Hobza P., Zahradník R., 1980. Weak Intermolecular Interactions in Chemistry and Biology Elsevier Scientific Pub. Co. Amsterdam, New York

    Google Scholar 

  2. Nishio M., Hirota M., Umezawa Y., 1998. The CH/π Interaction: Evidence, Nature, and Consequences John Wiley & Sons New York

    Google Scholar 

  3. Tamres M., (1952) J. Am. Chem. Soc. 74: 3375

    Article  CAS  Google Scholar 

  4. Hobza P., Havlas Z., (2000) Chem. Rev. 100: 4253

    Article  PubMed  CAS  Google Scholar 

  5. Brandl M., Weiss M.S., Jabs A., Sühnel J., Hilgenfeld R., (2001) J. Mol. Biol. 307: 357

    Article  PubMed  CAS  Google Scholar 

  6. Takahashi O., Kohno Y., Iwasaki S., Saito K., Iwaoka M., Tomoda S., Umezawa Y., Tsuboyama S., Nishio M., (2001) Bull. Chem. Soc. Jpn. 74: 2421

    Article  CAS  Google Scholar 

  7. Nishio M., (2004) Cryst. Eng. Comm. 6: 130

    CAS  Google Scholar 

  8. Tsuzuki S., Honda K., Uchimaru T., Mikami M., Tanabe K., (2000) J. Am. Chem. Soc. 122: 3746

    Article  CAS  Google Scholar 

  9. Tarakeshwar P., Choi H.S., Kim K.S., (2001) J. Am. Chem. Soc. 123: 3323

    Article  PubMed  CAS  Google Scholar 

  10. Bagno A., Saielli G., Scorrano G., (2002) Chem. Eur. J. 8: 2047

    Article  CAS  Google Scholar 

  11. Karlstrom G., Linse P., Wallqvist A., Jonssonf B., (1983) J. Am. Chem. Soc. 105: 3717

    Article  Google Scholar 

  12. Hobza P., Selzle H.L., Schlag E.W., (1994) J. Am. Chem. Soc. 116: 3500

    Article  CAS  Google Scholar 

  13. Hobza P., Selzle H.L., Schlag E.W., (1996) J. Phys. Chem. 100: 18790

    Article  CAS  Google Scholar 

  14. Tsuzuki S., Uchimaru T., Matsumura K., Mikami M., Tanabe K., (2000) Chem. Phys. Lett. 319: 547

    Article  CAS  Google Scholar 

  15. Hobza P., Spirko V., Havlas Z., Buchhold K., Reimann B., Barth H.-D., Brutschy B., (1999) Chem. Phys. Lett. 299: 180

    Article  CAS  Google Scholar 

  16. Muraki M., (2002) Protein Pept. Lett.9: 195

    Article  PubMed  CAS  Google Scholar 

  17. Sujatha M.S., Balaji B.V., (2004) Proteins55: 44

    Article  PubMed  CAS  Google Scholar 

  18. Muraki M., Harata K., (2000) Biochemistry39: 292

    Article  PubMed  CAS  Google Scholar 

  19. Huber R.E., Hakda S., Cheng C., Cupples C.G., Edwards R.A., (2003) Biochemistry42: 1796

    Article  PubMed  CAS  Google Scholar 

  20. Zolotnitsky G., Cogan U., Adir N., Solomon V., Shoham G., Shoham Y., (2004) Proc. Natl. Acad. Sci. USA 101: 11275

    Article  PubMed  CAS  Google Scholar 

  21. Davis A.P., Wareham R.S., (1999) Angew. Chem. Int. Ed. Engl. 38: 2978

    Article  PubMed  Google Scholar 

  22. Spiwok V., Lipovová P., Skálová T., Buchtelová E., Hašek J., Králová B., (2004) Carbohydr. Res. 339: 2275

    Article  PubMed  CAS  Google Scholar 

  23. Sujatha M.S., Sasidhar Y.U., Balaji P.V., (2004) Protein Sci.13: 2502

    Article  PubMed  CAS  Google Scholar 

  24. Sujatha M.S., Sasidhar Y.U., Balaji P.V., (2005) Biochemistry44: 8554

    Article  PubMed  CAS  Google Scholar 

  25. del Carmen Fernandez-Alonso M., Cañada F.J., Jiménez-Barbero J., Cuevas G., (2005) J. Am. Chem. Soc. 127: 7379

    Article  PubMed  CAS  Google Scholar 

  26. Damm W., Frontera A., Tirado-Rives J., Jorgensen W.L., (1997) J. Comp. Chem. 18: 1955

    Article  CAS  Google Scholar 

  27. Kuttel M., Brady J.W., Naidoo K.J., (2002) J. Comput. Chem. 23: 1236

    Article  PubMed  CAS  Google Scholar 

  28. Kouwijzer M.L.C.E., Grootenhuis P.D.J., (1995) J. Phys. Chem. 99: 13426

    Article  Google Scholar 

  29. Woods R.J., Dwek R.A., Edge C.J., Fraser-Reid B., (1995) J. Phys. Chem. 99: 3832

    Article  CAS  Google Scholar 

  30. Pérez S., Imberty A., Engelsen S.B., Gruza J., Mazeau K., Jiménez-Barbero J., Poveda A., Espinosa J.-F., van Eyck B.P., Johnson G.J., et al., (1998) Carbohydr. Res. 314: 141

    Article  Google Scholar 

  31. Hemmingsen L., Madsen D.E., Esbensen A.L., Olsen L., Engelsen S.B., (2004) Carbohydr. Res. 339: 937

    Article  PubMed  CAS  Google Scholar 

  32. Kubinyi, H., In Testa, B., van de Waterbeemd, H., Folkers, G. and Guy, R., (Eds.), Pharmacokinetic Optimization in Drug Research. Biological, Physicochemical, and Computational Strategies, Helvetica Chimica Acta and Wiley-VCH, Zürich, 2001, pp. 513–524

  33. Ladbury J.E., (1996) Chem. Biol. 3: 973

    Article  PubMed  CAS  Google Scholar 

  34. Kellenberger E., Rodrigo J., Muller P., Rognan D., (2004) Proteins57: 225

    Article  PubMed  CAS  Google Scholar 

  35. Møller C., Plesset M.S., (1934) Phys. Rev. 46: 618

    Article  Google Scholar 

  36. Lütteke T., Frank M., von der Lieth C.W., (2004) Carbohydr. Res. 339: 1015

    Article  PubMed  CAS  Google Scholar 

  37. Guérin D.M.A., Lascombe M.-B., Costabel M.B., Souchon H., Lamzin V., Béguin P., Alzari P.M., (2002) J. Mol. Biol. 316: 1061

    Article  PubMed  CAS  Google Scholar 

  38. Sanders D.A.R., Moothoo D.N., Raftery J., Howard A.J., Helliwell J.R., Naismith J.H., (2001) J. Mol. Biol. 310: 875

    Article  PubMed  CAS  Google Scholar 

  39. Merritt E.A., Kuhn P., Sarfaty S., Erbe J.L., Holmes R.K., Hol W.G.J., (1998) J. Mol. Biol. 282: 1043

    Article  PubMed  CAS  Google Scholar 

  40. Notenboom V., Boraston A.B., Williams J.S., Kilburn D.G., Rose D.R., (2002) Biochemistry 41: 4246

    Article  PubMed  CAS  Google Scholar 

  41. Varrot A., Frandsen T.B., von Ossowski I., Boyer V., Cottaz S., Driguez H., Schülein M., Davies G.J., (2003) Structure 11: 855

    Article  PubMed  CAS  Google Scholar 

  42. Charnock S.J., Bolam D.N., Nurizzo D., Szabó L., McKie V.A., Gilbert H.J., Davies G.J., (2002) Proc. Natl. Acad. Sci. USA 99: 14077

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A., (1993) J. Comput. Chem. 14: 1347

    Article  CAS  Google Scholar 

  44. Boys S.F., Bernardi F., (1970) Mol. Phys. (UK) 19: 553

    Google Scholar 

  45. Jorgensen W.L., Tirado-Rives J., (1988) J. Am. Chem. Soc. 110: 1657

    Article  CAS  Google Scholar 

  46. van Gunsteren, W.F., Billeter, S., Eising, A.A., Hübenberger, P.H., Krüger, P., Mark, A.E., Scott, W.R.P. and Tironi, I.G., Biomolecular Simulations: The GROMOS 96 Manual and User Guide VDF Zürich, 1996

  47. MacKerell Jr., A.D., Bashford D., Bellott M., Dunbrack Jr. R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher III., W.E., Roux B., Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., Karplus M., (1998) J. Phys. Chem. B. 102: 3586

    Article  CAS  Google Scholar 

  48. Pearlman D.A., Case D.A., Caldwell J.W., Ross W.R., Cheatham T.E., DeBolt III., S., Ferguson D., Seibel G., Kollman P., (1995) Comp. Phys. Commun. 91: 1

    Article  CAS  Google Scholar 

  49. Allinger N.L., Kok R.A., Imam M.R., (1988) J. Comput. Chem.9: 591

    Article  CAS  Google Scholar 

  50. Lii J.-H., Allinger N.L., (1989) J. Am. Chem. Soc. 111: 8576

    Article  CAS  Google Scholar 

  51. Pappu R.V., Hart R.K., Ponder J.W., (1998) J. Phys. Chem. B. 102: 9725

    Article  CAS  Google Scholar 

  52. Guex N., Peitsch M.C., (1997) Electrophoresis 18: 2714

    Article  PubMed  CAS  Google Scholar 

  53. Turnbull W.B., Precious B.L., Homans S.W., (2004) J Am Chem Soc. 126: 1047

    Article  PubMed  CAS  Google Scholar 

  54. Coutinho, P.M. and Henrissat, B., Carbohydrate-Active Enzymes server, 1999: http://afmb.cnrs-mrs.fr/CAZY/

  55. Coutinho, P.M. and Henrissat, B., In Gilbert, H.J., Davies, G., Henrissat, B. and Svensson, B. (Eds.), Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, 1999, pp. 3–12

  56. Johnson E.R., Wolkow R.A., DiLabio G.A., (2004) Chem. Phys. Lett. 394: 334

    Article  CAS  Google Scholar 

  57. Grimme S., (2004) J. Comput. Chem. 25: 1463

    Article  PubMed  CAS  Google Scholar 

  58. Morales J.C., Penadés S., (1998) Angew. Chem. Int. Edit. 37: 654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to gratefully acknowledge the Czech Science Foundation (GACR 204/02/0843) and the Academy of Sciences of the Czech Republic (projects B500500512 and AVOZ 40500505) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtěch Spiwok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiwok, V., Lipovová, P., Skálová, T. et al. Modelling of carbohydrate–aromatic interactions: ab initio energetics and force field performance. J Comput Aided Mol Des 19, 887–901 (2005). https://doi.org/10.1007/s10822-005-9033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-9033-z

Keywords

Navigation