Skip to main content

Advertisement

Log in

Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

To find useful information for discovering dual functional inhibitors against both wild type (WT) and K103N mutant reverse transcriptases (RTs) of HIV-1, molecular docking and 3D-QSAR approaches were applied to a set of twenty-five 4,1-benzoxazepinone analogues of efavirenz (SUSTIVA®), some of them are active against the two RTs. 3D-QSAR models were constructed, based on their binding conformations determined by molecular docking, with r 2 cv values ranging from 0.656 to 0.834 for CoMFA and CoMSIA, respectively. The models were then validated to be highly predictive and extrapolative by inhibitors in two test sets with different molecular skeletons. Furthermore, CoMFA models were found to be well matched with the binding sites of both WT and K103N RTs. Finally, a reasonable pharmacophore model of 4,1-benzoxazepinones were established. The application of the model not only successfully differentiated the experimentally determined inhibitors from non-inhibitors, but also discovered two potent inhibitors from the compound database SPECS. On the basis of both the 3D-QSAR and pharmacophore models, new clues for discovering and designing potent dual functional drug leads against HIV-1 were proposed: (i) adopting positively charged aliphatic group at the cis-substituent of C3; (ii) reducing the electronic density at the position of O4; (iii) positioning a small branched aliphatic group at position of C5; (iv) using the negatively charged bulky substituents at position of C7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brian GT, Summers MF (1999) J Mol Biol 285:1

    Article  Google Scholar 

  2. Emerman M, Malim MH (1998) Science 280:1880

    Article  CAS  Google Scholar 

  3. Mitsuya H, Broder S (1987) Nature 325:773

    Article  CAS  Google Scholar 

  4. Esnouf R, Ren J, Ross C, Jones Y, Stammers D, Stuart D (1995) Nat Struct Biol 2:303

    Article  CAS  Google Scholar 

  5. Jones PS (1998) Antiviral Chem Chemother 9:283

    CAS  Google Scholar 

  6. Pedersen OS, Pedersen EB (1999) Antiviral Chem Chemother 10:285

    CAS  Google Scholar 

  7. Vella S, Palmisano L (2000) Antiviral Res 45:1

    Article  CAS  Google Scholar 

  8. Bardsley-Elliot A, Perry CM (2000) Pediatric Drugs 2:373

    Article  CAS  Google Scholar 

  9. Corbett JW, Ko SS, Rodgers JD, Gearhart LA, Magnus NA, Bacheler LT, Diamond S, Jeffrey S, Klabe RM, Cordova BC, Garber S, Logue K, Trainor GL, Anderson PS, Erickson-Viitanen SK (2000) J Med Chem 43:2019

    Article  CAS  Google Scholar 

  10. Moyle G (2001) Drugs 61:19

    Article  CAS  Google Scholar 

  11. Lee K, Gulick RM (2001) Curr Infec Dis Rep 3:193

    Google Scholar 

  12. Adkins JC, Nobel S (1998) Drugs 56:1055

    Article  CAS  Google Scholar 

  13. Robert WB Jr (2001) Expert Opin Investig Drugs 10:1423

    Article  Google Scholar 

  14. Young SD, Britcher SF, Tran LO, Payne LS, Lumma WC, Lyle TA, Huff JR, Anderson PS, Olsen DB, Carroll SS (1995) Antimicrob Agents Chemother 39:2602

    CAS  Google Scholar 

  15. Lindberg J, Sigurdsson S, Lowgren S, Andersson HO, Sahlberg C, Noreen R, Fridborg K, Zhang H, Unge T (2002) Eur J Biochem 269:1670

    Article  CAS  Google Scholar 

  16. Ren J, Nichols C, Bird L, Chamberlain P, Weaver K, Short S, Stuart DI, Stammers DK (2001) J Mol Biol 312:795

    Article  CAS  Google Scholar 

  17. Jay AM, David DC, Abdul M, Beverly CC, Ronald MK, Steven PS (2001) Bioorg Med Chem Lett 11:619

    Article  Google Scholar 

  18. Chamberlain PP, Ren J, Nichols CE, Douglas L, Lennerstrand J, Larder BA, Stuart DI, Stammers DK (2002) J Virol 76:10015

    Article  CAS  Google Scholar 

  19. Medina-Franco JL, Rodríguez-Morales S, Juárez-Gordiano C, Hernández-Campos A, Castillo R (2004) J Comput Aided Mol Des 18:345

    Article  CAS  Google Scholar 

  20. De Clercq E (2001) Curr Med Chem 8:1543

    Google Scholar 

  21. Ding J, Das K, Moereels H, Koymans L, Andries K, Paul AJ, Atephen J, Huges H, Arnold E (1995) Struct Biol 2:407

    Article  CAS  Google Scholar 

  22. Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK (2000) Structure 8:1089

    Article  CAS  Google Scholar 

  23. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Science 256:1783

    Article  CAS  Google Scholar 

  24. Ding J, Das K, Tantillo C, Zhang W, Clark ADJ, Jessen S, Lu X, Hsiou Y, Jacobo-Molina A, Andries K (1995) Structure 3:365

    Article  CAS  Google Scholar 

  25. Mao C, Sudbeck EA, Venkatachalam TK, Uckun FM (1999b) Antiviral Chem Chemother 10:233

    CAS  Google Scholar 

  26. Cocuzza AJ, Chidester DR, Cordova BC, Klabe RM, Jeffrey S, Diamond S, Weigelt CA, Ko SS, Bacheler LT, Erickson-Viitanen SK, Rodgers JD (2001) Bioorg Med Chem Lett 11:1389

    Article  CAS  Google Scholar 

  27. Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  28. Klebe G, Abraham U (1999) J Comput Aided Mol Des 13:1

    Article  CAS  Google Scholar 

  29. Liu G, Zhang Z, Luo X, Shen J, Liu H, Shen X, Chen K, Jiang H (2004) Bioorg Med Chem 12:4147

    Article  CAS  Google Scholar 

  30. Powell MJD (1977) Math Programming 12:241

    Article  Google Scholar 

  31. Marsili M, Gasteiger J (1980) Croat Chem Acta 53:601

    Google Scholar 

  32. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219

    Article  CAS  Google Scholar 

  33. Morris GM, Goodsell DS, Huey R, Hart WE, Halliday S, Belew R, Olson AJ (1999) AutoDock, Version 3.0.3. The Scripps Research Institute, Molecular Graphics Laboratory, Department of Molecular Biology

  34. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127

    CAS  Google Scholar 

  35. Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145

    Article  CAS  Google Scholar 

  36. Pungpo P, Hannongbua S (2000) J Mol Graphics Mod 18:581

    Article  CAS  Google Scholar 

  37. Corbett JW, Ko SS, Rodgers JD, Gearhart LA, Magnus NA, Bacheler LT, Diamond S, Jeffrey S, Klabe RM, Cordova BC, Garber S, Logue K, Trainor GL, Anderson PS, Erickson-viitanen SK (2000) J Med Chem 43:2019

    Article  CAS  Google Scholar 

  38. Campiani G, Ramunno A, Maga G, Nacci V, Fattorusso C, Novellino E (2002) Curr Pharma Des 8:615

    Article  CAS  Google Scholar 

  39. Urabe T, Sano K, Tanno M, Mizoguchi J, Otani M, Lee MH, Takasaki T, Kusakabe H, Imagawa DT, Nakai M (1992) J Virol Methods 40:145

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial supports Shanghai Key Basic R&D Program (grants 03DZ19228 and 05JC14092), and 863 program (grant 2003AA235010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiliang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Zheng, M., Du, L. et al. Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues. J Comput Aided Mol Des 20, 281–293 (2006). https://doi.org/10.1007/s10822-006-9050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9050-6

Keywords

Navigation