Skip to main content
Log in

Representation of molecular structure using quantum topology with inductive logic programming in structure–activity relationships

  • Original Research Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The requirement of aligning each individual molecule in a data set severely limits the type of molecules which can be analysed with traditional structure activity relationship (SAR) methods. A method which solves this problem by using relations between objects is inductive logic programming (ILP). Another advantage of this methodology is its ability to include background knowledge as 1st-order logic. However, previous molecular ILP representations have not been effective in describing the electronic structure of molecules. We present a more unified and comprehensive representation based on Richard Bader’s quantum topological atoms in molecules (AIM) theory where critical points in the electron density are connected through a network. AIM theory provides a wealth of chemical information about individual atoms and their bond connections enabling a more flexible and chemically relevant representation. To obtain even more relevant rules with higher coverage, we apply manual postprocessing and interpretation of ILP rules. We have tested the usefulness of the new representation in SAR modelling on classifying compounds of low/high mutagenicity and on a set of factor Xa inhibitors of high and low affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. King et al. [6] wrongly classified one of the inactive compounds as active resulting in 13 active compounds. This explains the higher accuracy reported here.

References

  1. Hansch C (1969) Acc Chem Res 2:232

    Article  CAS  Google Scholar 

  2. Hansch C, Dunn WJ III (1964) J Am Chem Soc 86:1616

    Article  CAS  Google Scholar 

  3. Hall LH, Kier LB (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 2. VCH Publishers, New York, pp 367–422

    Google Scholar 

  4. Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  5. Nienhuys-Cheng SH, de Wolf R (1997) Foundations of inductiv logic programming, volume 1228 of Lecture notes in artificial intelligence. Springer-Verlag, Berlin

    Google Scholar 

  6. King RD, Muggleton SH, Srinivasan A, Sternberg JE (1996) Proc Natl Acad Sci USA 93:438

    Article  CAS  Google Scholar 

  7. Srinivasan A, Page D, Camacho R, King RD (2006) Mach Learn

  8. Srinivasan A, King RD (1999) Data Min Knowl Disc 3:37

    Article  Google Scholar 

  9. Finn P, Muggleton S, Page D, Srinivasan A (1998) Mach Learn 30:241

    Article  Google Scholar 

  10. Marchant-Geneste N, Watson KA, Alsberg BK, King RD (2002) J Med Chem 45:399

    Article  Google Scholar 

  11. Enot DP, King RD (2003) Lecture Notes in Artificial Intelligence 2838:156

    Google Scholar 

  12. Nattee C, Sinthupinyo S, Numao M, Okada T (2005) In Lecture notes in artificial intelligence vol 3430, pp 92–111. Springer-Verlag, Berlin

  13. Srinivasan A, King RD, Bain ME (2003) J Mach Learn Res 4:369

    Article  Google Scholar 

  14. Bader RFW (1990) Atoms in molecules: A quantum theory. Number 22 in International series of monographs on chemistry. Clarendon Press, Oxford

    Google Scholar 

  15. Alsberg BK, Marchand-Geneste N, King RD (2000) Chemometr Intell Lab 54:75

    Article  CAS  Google Scholar 

  16. Alsberg BK, Marchand-Geneste N, King RD (2001) Anal Chim Acta 446:3

    Article  CAS  Google Scholar 

  17. Chaudry UA, Popelier PLA (2004) J Org Chem 69:233

    Article  CAS  Google Scholar 

  18. Smith PJ, Popelier PLA (2004) J Comput Aid Mol Des 18:135

    Article  CAS  Google Scholar 

  19. Chaudry UA, Popelier PLA (2003) J Phys Chem A 107:4578

    Article  CAS  Google Scholar 

  20. O’Brian SE, Popelier PLA (2002) J Chem Soc Perkin Trans 2:478

    Google Scholar 

  21. Popelier PLA, Chaudry UA, Smith PJ (2002) J Chem Soc Perkin Trans 2:1231

    Google Scholar 

  22. O’Brian SE, Popelier PLA (2001) J Chem Inf Comput Sci 41:764

    Article  Google Scholar 

  23. Popelier PLA (1999) J Phys Chem A 103:2883

    Article  CAS  Google Scholar 

  24. O’Brian SE, Popelier PLA (1999) Can J Chem 77:28

    Article  Google Scholar 

  25. King RD, Marchand-Geneste N, Alsberg BK (2001) Linköping electronic articles in Computer and Information Science 6

  26. Muggleton S, De Raedt L (1994) J Logic Programming 20:629

    Article  Google Scholar 

  27. Kersting K, De Raedt L (2002) Basic principles of learning bayesian logic programs

  28. Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C (1991) Anal Chim Acta 34:786

    CAS  Google Scholar 

  29. Fontaine F, Pastor M, Zamora I, Sanz F (2005) J Med Chem 48:2687

    Article  CAS  Google Scholar 

  30. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) J Med Chem 43:3233

    Article  CAS  Google Scholar 

  31. Fontaine F, Pastor M, Sanz F (2005) J Med Chem 47:2805

    Article  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 (Revision A1). Gaussian Inc., Pittsburgh PA

    Google Scholar 

  33. Onchoke KK, Hadad CM, Dutta PK (2004) Polycycl Aromat Compd 24:37

    Article  CAS  Google Scholar 

  34. MORPHY98 – A program written by P.L.A. Popelier with a contribution from R.G.A. Bone. UMIST, Manchester, England

  35. Srinivasan A ALEPH: A learning engine for proposing hypothesis. http://www.web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.pl.

  36. Page D, Srinivasan A (2003) J Mach Learn Res 4:415

    Article  Google Scholar 

  37. Srinivasan A, King RD, Muggleton SH (1999) The role of background knowledge: using a problem from chemistry to examine the performance of an ILP program. Technical Report PRG-TR-08-99, Oxford Univsersity Computing Laboratory, Oxford

    Google Scholar 

  38. De Raedt L, Kersting K (2004) Lecture Notes in Artificial Intelligence 3244:19

    Google Scholar 

  39. McNemar Q (1947) Psychometrika 12:153

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by The Norwegian Research Council (grant no. 154265/V40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn K. Alsberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttingsrud, B., Ryeng, E., King, R.D. et al. Representation of molecular structure using quantum topology with inductive logic programming in structure–activity relationships. J Comput Aided Mol Des 20, 361–373 (2006). https://doi.org/10.1007/s10822-006-9058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9058-y

Keywords

Navigation