Skip to main content

Advertisement

Log in

High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In order to assess bioactivity profiles for small organic molecules we propose to use parallel pharmacophore-based virtual screening. Our aim is to provide a fast, reliable and scalable system that allows for rapid in silico activity profile prediction of virtual molecules. In this proof of principle study, carried out with the new structure-based pharmacophore modelling tool LigandScout and the high-performance database mining platform Catalyst, we present a model work for the application of parallel pharmacophore-based virtual screening on a set of 50 structure-based pharmacophore models built for various viral targets and 100 antiviral compounds. The latter were screened against all pharmacophore models in order to determine if their known biological targets could be correctly predicted via an enrichment of corresponding pharmacophores matching these ligands. The results demonstrate that the desired enrichment, i.e. a successful activity profiling, was achieved for approximately 90% of all input molecules. Additionally, we discuss descriptors for output validation, as well as various aspects influencing the analysis of the obtained activity profiles, and the effect of the searching mode utilized for screening. The results of the study presented here clearly indicate that pharmacophore-based parallel screening comprises a reliable in silico method to predict the potential biological activities of a compound or a compound library by screening it against a series of pharmacophore queries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Langer T, Krovat E-M (2003) Curr Opin Drug Discov Dev 6:370

    CAS  Google Scholar 

  2. Krovat E-M, Steindl T, Langer T (2005) Curr Comput-Aided Drug Des 1:93

    Article  CAS  Google Scholar 

  3. Güner OF, Clement O, Kurogi Y (2005) Curr Med Chem 11:2991

    Google Scholar 

  4. Güner OF (2005) IDrugs 8:567

    Google Scholar 

  5. Langer T, Wolber G (2004) Pure Appl Chem 76:991

    CAS  Google Scholar 

  6. Schuster D, Langer T (2005) J Chem Inf Model 45:431

    Article  CAS  Google Scholar 

  7. Sanguinetti MC, Mitcheson JS (2005) Trends Pharmacol Sci 26:119

    Article  CAS  Google Scholar 

  8. Clement OO, Guener OF (2004) In: Testa B (ed) Proceedings of the 3rd pharmacokinetic profiling in drug research: biological, physicochemical, and computational strategies. Verlag Helvetica Chimica Acta, Zurich, pp381

  9. Klabunde T, Evers A (2005) ChemBioChem 6:876

    Article  CAS  Google Scholar 

  10. Norinder U (2005) QSAR Environ Res 16:1

    Article  CAS  Google Scholar 

  11. Oloff S, Zhang S, Sukumar N, Breneman C, Tropsha A (2006) J Chem Inf Model 46:844–851

    Article  CAS  Google Scholar 

  12. Cleves AE, Jain AN (2006) J Med Chem 49:2921

    Article  CAS  Google Scholar 

  13. LigandScout 1.0 is available from Inte:Ligand GmbH, Vienna, Austria (http://www.inteligand.com/ligandscout)

  14. Wolber G, Langer T (2005) J Chem Inf Model 45:160

    CAS  Google Scholar 

  15. Schuster D, Laggner C, Palusczak A, Hartmann RW, Langer T (2006) J Chem Inf Model 46:1301

    CAS  Google Scholar 

  16. Krovat E-M, Frühwirth KH, Langer T (2005) J Chem Inf Model 45:146

    CAS  Google Scholar 

  17. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P (2000) Nucleic Acids Res 28:235

    Article  CAS  Google Scholar 

  18. Zuckerman AJ, et al (2000) Principles and practice of clinical virology, 4th edn. Wiley, Chinchester New York Weinheim Brisbane Singapore Toronto

    Google Scholar 

  19. Catalyst Version 4.11 available from Accelrys Inc, San Diego, CA, USA

  20. Derwent World Drug Index, available in Catalyst data format from Accelrys Inc, San Diego, CA, USA

  21. De Clercq E (2004) J Clin Virol 30:115

    Article  Google Scholar 

  22. Ren J, Nichols C, Bird L, Chamberlain P, Weaver K, et al (2001) J Mol Biol 312:795

    Article  CAS  Google Scholar 

  23. Alymova IV, Taylor G, Portner A (2005) Curr Drug Targets Infect Disord 5:401

    Article  CAS  Google Scholar 

  24. Hadfield AT, Diana GD, Rossmann MG (1999) Proc Natl Acad Sci USA 96:14730

    Article  CAS  Google Scholar 

  25. Kirchmair J, Laggner C, Wolber G, Langer T (2005) J Chem Inf Model 45:422

    Article  CAS  Google Scholar 

  26. Kirchmair J, Wolber G, Laggner C, Langer T (2006) J Chem Inf Model 46:1848

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Langer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steindl, T.M., Schuster, D., Wolber, G. et al. High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening. J Comput Aided Mol Des 20, 703–715 (2006). https://doi.org/10.1007/s10822-006-9066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9066-y

Keywords

Navigation