Skip to main content
Log in

Predicting infinite dilution activity coefficients of organic compounds in water by quantum-connectivity descriptors

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Quantitative structure-property relationship (QSPR) models are developed to predict the logarithm of infinite dilution activity coefficient of hydrocarbons, oxygen containing organic compounds and halogenated hydrocarbons in water at 298.15 K. The description of the molecular structure in terms of quantum-connectivity descriptors allows to obtain more simple QSPR models because of the quantum-chemical and topological information coded in this type of descriptors. The models developed in this paper have fewer descriptors and better statistics than other models reported in literature. The current models allow a more transparent physical interpretation of the phenomenon in terms of intermolecular interactions which occur in solution and which explain the respective deviations from ideality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sandler SI (1996) Fluid Phase Equilib 116:343

    Article  CAS  Google Scholar 

  2. Sandler SI (1999) J Chem Thermodynamics 31:3

    Article  CAS  Google Scholar 

  3. Kojima K, Zhang S, Hiaki T (1997) Fluid Phase Equilib 131:145

    Article  CAS  Google Scholar 

  4. Eckert CA, Newman BA, Nicolaides GL, Long TC (1981) AIChE J 27:33

    Article  CAS  Google Scholar 

  5. Thomas ER, Eckert CA (1984) Ind Eng Chem Process Des Dev 23:194

    Article  CAS  Google Scholar 

  6. Kojima K, Tochigi K (1979) Prediction of vapor liquid equilibria by the Asog method Physical Sciences Data 3. Elsevier Scientific Publishing Company, Amsterdam

  7. Fredenslund Aa, Jones RL, Prausnitz JM (1975) AIChE J 21:1086

    Article  CAS  Google Scholar 

  8. Mitchell BE, Jurs PC (1998) J Chem Inf Comput Sci 38:200

    Article  CAS  Google Scholar 

  9. Delgado EJ, Alderete JB (2001) J Comput Chem 22:1851

    Article  CAS  Google Scholar 

  10. He J, Zhong C (2003) Fluid Phase Equilib 205:303

    Article  CAS  Google Scholar 

  11. Giralt F, Espinosa G, Arenas A, Ferre-Gine J, Amat L, Girones X, Carbo-Dorca R, Cohen Y (2004) AIChE J 50:1315

    Article  CAS  Google Scholar 

  12. Hawkins DM (2004) J Chem Inf Comput Sci 44:1

    Article  CAS  Google Scholar 

  13. Estrada E, Molina E (2001) J Chem Inf Comput Sci 41:791

    Article  CAS  Google Scholar 

  14. Estrada E, Delgado EJ, Alderete JB, Jaña GA (2004) J Comput Chem 25:1787

    Article  CAS  Google Scholar 

  15. Katritzky AR, Lobanov VS, Karelson M (1995) Chem Soc Rev 24:279

    Article  CAS  Google Scholar 

  16. Randic M (1991) J Chem Inf Comput Sci 31:311

    Article  CAS  Google Scholar 

  17. Berry RS, Rice SA, Ross J (1980) Physical chemistry. John Wiley & Sons, New York

    Google Scholar 

  18. McQuarrie DA, Simon JD (1997) Physical chemistry. A molecular approach. University Sciences Books, Sausalito

    Google Scholar 

  19. Liu HX, Hu RJ, Zhang RS, Yao XJ, Liu MC, Hu ZD, Fan BT (2005) J Comput Aid Mol Des 19:33

    Article  Google Scholar 

  20. Katritzky AR, Lobanov VS, Karelson M (1994) Codessa version 2.0 Reference Manual

  21. Stanton DT, Jurs PC (1990) Anal Chem 62:2323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from FONDECYT, project No 7020464. EE thanks “Ramón y Cajal” program, Spain for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo J. Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada, E., Díaz, G.A. & Delgado, E.J. Predicting infinite dilution activity coefficients of organic compounds in water by quantum-connectivity descriptors. J Comput Aided Mol Des 20, 539–548 (2006). https://doi.org/10.1007/s10822-006-9079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9079-6

Keywords