Skip to main content
Log in

Comparative and pharmacophore model for deacetylase SIRT1

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Sirtuins are NAD-dependent histone deacetylases, which cleave the acetyl-group from acetylated proteins, such as histones but also the acetyl groups from several transcription factors, and in this way can change their activities. Of all seven mammalian SirTs, the human sirtuin SirT1 has been the most extensively studied. However, there is no crystal structure or comparative model reported for SirT1. We have therefore built up a three-dimensional comparison model of the SirT1 protein catalytic core (domain area from residues 244 to 498 of the full length SirT1) in order to assist in the investigation of active site–ligand interactions and in the design of novel SirT1 inhibitors. In this study we also propose the binding-mode of recently reported set of indole-based inhibitors in SirT1. The site of interaction and the ligand conformation were predicted by the use of molecular docking techniques. To distinguish between active and inactive compounds, a post-docking filter based on H-bond network was constructed. Docking results were used to investigate the pharmacophore and to identify a filter for database mining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ekwall K (2005) Trends Genet 21:608

    Article  CAS  Google Scholar 

  2. Guarente L (2000) Genes Dev 14:1021

    CAS  Google Scholar 

  3. Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL (2001) Biochemistry 40:15456

    Article  CAS  Google Scholar 

  4. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) Mol Cell 11:437

    Article  CAS  Google Scholar 

  5. Blander G, Guarente L (2004) Annu Rev Biochem 73:417

    Article  CAS  Google Scholar 

  6. Porcu M, Chiarugi A (2005) Trends Pharmacol Sci 26:94

    Article  CAS  Google Scholar 

  7. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Cell 107:137

    Article  CAS  Google Scholar 

  8. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Science 303:2011

    Article  CAS  Google Scholar 

  9. Nemoto S, Fergusson MM, Finkel T (2005) J Biol Chem 280:16456

    Article  CAS  Google Scholar 

  10. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nature 434:113

    Article  CAS  Google Scholar 

  11. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Nature 425:191

    Article  CAS  Google Scholar 

  12. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, Bedalov A, Kennedy BK (2005) J Biol Chem 280:17038

    Article  CAS  Google Scholar 

  13. Borra MT, Smith BC, Denu JM (2005) J Biol Chem 280:17187

    Article  CAS  Google Scholar 

  14. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA (2002) J Biol Chem 277:45099

    Article  CAS  Google Scholar 

  15. Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL (2001) J Biol Chem 276:38837

    Article  CAS  Google Scholar 

  16. Marcotte PA, Richardson PR, Guo J, Barrett LW, Xu N, Gunasekera A, Glaser KB (2004) Anal Biochem 332:90

    Article  CAS  Google Scholar 

  17. Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA (2001) Proc Natl Acad Sci USA 98:15113

    Article  CAS  Google Scholar 

  18. Mai A, Massa S, Lavu S, Pezzi R, Simeoni S, Ragno R, Mariotti FR, Chiani F, Camilloni G, Sinclair DA (2005) J Med Chem 48:7789

    Article  CAS  Google Scholar 

  19. Napper AD, Hixon J, McDonagh T, Keavey K, Pons JF, Barker J, Yau WT, Amouzegh P, Flegg A, Hamelin E, Thomas RJ, Kates M, Jones S, Navia MA, Saunders JO, DiStefano PS, Curtis R (2005) J Med Chem 48:8045

    Article  CAS  Google Scholar 

  20. Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, Distefano PS, Huber LJ (2006) Mol Cell Biol 26:28

    Article  CAS  Google Scholar 

  21. Frye RA (2000) Biochem Biophys Res Commun 273:793

    Article  CAS  Google Scholar 

  22. Finnin MS, Donigian JR, Pavletich NP (2001) Nat Struct Biol 8:621

    Article  CAS  Google Scholar 

  23. Min J, Landry J, Sternglanz R, Xu RM (2001) Cell 105:269

    Article  CAS  Google Scholar 

  24. Zhao K, Harshaw R, Chai X, Marmorstein R (2004) Proc Natl Acad Sci USA 101:8563

    Article  CAS  Google Scholar 

  25. Avalos JL, Boeke JD, Wolberger C (2004) Mol Cell 13:639

    Article  CAS  Google Scholar 

  26. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) Acta Crystallogr D Biol Crystallogr 58:899

    Article  Google Scholar 

  27. Protein-protein BLAST (blastp), National Center for Biotechnology Information, Bethesda, U.S. (http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi)

  28. SAS, European Bioinformatics Institute, Cambridge, U.K. (http://www.ebi.ac.uk/thornton-srv/databases/sas/)

  29. InsightII v 2000, Accelrys, Inc., San Diego, CA (http://wwwaccelryscom/)

  30. GROMACS, v. 3.1.4, Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands (http://www.gromacs.org/)

  31. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) J Comput Chem 26:1701

    Article  Google Scholar 

  32. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) J Biomol NMR 8:477

    Article  CAS  Google Scholar 

  33. GRID v. 1.2.2, Molecular Discovery Ltd., U.K. (http://www.moldiscovery.com/)

  34. GOLD v. 3.0, Cambridge Crystallographic Data Centre, Cambridge, U.K. (http://www.ccdc.cam.ac.uk)

  35. SYBYL v. 7.1, Tripos Inc., St. Louis, MO (www.tripos.com)

  36. Zhao K, Chai X, Marmorstein R (2003) Structure 11:1403

    Google Scholar 

  37. Avalos JL, Bever KM, Wolberger C (2005) Mol Cell 17:855

    Article  CAS  Google Scholar 

  38. Chang JH, Kim HC, Hwang KY, Lee JW, Jackson SP, Bell SD, Cho Y (2002) J Biol Chem 277:34489

    Article  CAS  Google Scholar 

  39. Zhao K, Chai X, Marmorstein R (2004) J Mol Biol 337:731

    Article  CAS  Google Scholar 

  40. GeneDoc v. 2.6.002, Nicholas KB, Nicholas HB (http://www.psc.edu/biomed/genedock)

  41. Essman U, Perrera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577

    Google Scholar 

  42. Shan Y, Klepeis JL, Eastwood MP, Dror RO, Shaw DE (2005) J Chem Phys 122:54101

    Article  Google Scholar 

  43. Berendsen HJC, Postma JPM, Van Gusteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684

    Google Scholar 

  44. Tervo AJ, Kyrylenko S, Niskanen P, Salminen A, Leppanen J, Nyronen TH, Jarvinen T, Poso A (2004) J Med Chem 47:6292

    Article  CAS  Google Scholar 

  45. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C (2002) Mol Cell 10:523

    Article  CAS  Google Scholar 

  46. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Nature 401:188

    Article  CAS  Google Scholar 

  47. Avalos JL, Bever KM, Wolberger C (2005) Mol Cell 17:855

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tero Huhtiniemi.

Additional information

Tero Huhtiniemi and Carsten Wittekindt contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huhtiniemi, T., Wittekindt, C., Laitinen, T. et al. Comparative and pharmacophore model for deacetylase SIRT1. J Comput Aided Mol Des 20, 589–599 (2006). https://doi.org/10.1007/s10822-006-9084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9084-9

Keywords