Skip to main content
Log in

Strategies to design pyrazolyl urea derivatives for p38 kinase inhibition: a molecular modeling study

  • Original paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The p38 protein kinase is a serine–threonine mitogen activated protein kinase, which plays an important role in inflammation and arthritis. A combined study of 3D-QSAR and molecular docking has been undertaken to explore the structural insights of pyrazolyl urea p38 kinase inhibitors. The 3D-QSAR studies involved comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA). The best CoMFA model was derived from the atom fit alignment with a cross-validated r 2 (q 2) value of 0.516 and conventional r 2 of 0.950, while the best CoMSIA model yielded a q 2 of 0.455 and r 2 of 0.979 (39 molecules in training set, 9 molecules in test set). The CoMFA and CoMSIA contour maps generated from these models provided inklings about the influence of interactive molecular fields in the space on the activity. GOLD, Sybyl (FlexX) and AutoDock docking protocols were exercised to explore the protein–inhibitor interactions. The integration of 3D-QSAR and molecular docking has proffered essential structural features of pyrazolyl urea inhibitors and also strategies to design new potent analogues with enhanced activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pearson G, Robinson F, Beers T, Xu E, Berman K, Cobb M (2001) Endocr Rev 22:153

    Article  CAS  Google Scholar 

  2. Kulkarni RG, Achaiah G, Sastry GN (2006) Curr Pharm Des 12:2437

    Article  CAS  Google Scholar 

  3. Ono K, Han J (2000) Cell Sign 12:1

    Article  CAS  Google Scholar 

  4. Zarubin T, Han J (2005) Cell Res 15:11

    Article  CAS  Google Scholar 

  5. Schaeffer H, Weber M (1999) Mol Cell Biol 19:2435

    CAS  Google Scholar 

  6. English J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, Xu S, Cobb MH (1999) Exp Cell Res 253:255

    Article  CAS  Google Scholar 

  7. Behr TM, Berova M, Doe CP, Ju H, Angermann CE, Boehm J, Willette RN (2003) Cur Opin Invest Drugs 4:1059

    CAS  Google Scholar 

  8. Jiang Y, Chen C, Li Z, Guo W, Gegner A, Lins S, Han J (1996) J Biol Chem 271:17920

    Article  CAS  Google Scholar 

  9. Li Z, Jiang Y, Ulevitch J, Han J (1996) Biochem Biophys Res Comm 228:334

    Article  CAS  Google Scholar 

  10. Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Padova F, Ulevitch R, Han J (1997) J Biol Chem 272:30122

    Article  CAS  Google Scholar 

  11. Hanks SK, Hunter T (1999) FASEB J 9:576

    Google Scholar 

  12. New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ, Kato Y, Parry G, Han J (1998) EMBO J 17:3372

    Article  CAS  Google Scholar 

  13. Newton R, Holden N (2003) Biodrugs 17:113

    Article  CAS  Google Scholar 

  14. Jackson R, Bolognese B, Hillegass L, Kassis S, Adams J, Griswold DE, Winkler JD (1998) J Pharmacol Exp Ther 284:687

    CAS  Google Scholar 

  15. Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL (2000) Immunopharmacology 47:185

    Article  CAS  Google Scholar 

  16. Lee C, Laydon J, McDonnell P, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW (1994) Nature 372:739

    Article  CAS  Google Scholar 

  17. Gallagher TF, Susan M, Thomson SM, Garigipati RS, Sorenson ME, Smietana JM, Lee D, Bender PE, Lee JC, Laydon JT, Griswold DE (1995) Bioorg Med Chem Let 5:1171

    Article  CAS  Google Scholar 

  18. Wang Z, Canagarajah J, Boehm JC, Kassisa S, Cobb MH, Young PR, Abdel-Meguid S, Adams JL, Goldsmith EJ (1998) Structure 6:1117

    Article  CAS  Google Scholar 

  19. Young PR, McLaughlin MM, Kumar S, Kasis S, Doyle ML, McNultry D, Gallagher TF, Fisher S, McDonnell PC, Carr SA, Huddleston MJ, Seibel G, Porter TG, Livi GP, Adams JL, Lee JC (1997) J Biol Chem 272:12116

    Article  CAS  Google Scholar 

  20. Laufer S, Wagner G, Kotschenreuther A, Albrecht W (2003) J Med Chem 46:3230

    Article  CAS  Google Scholar 

  21. Cirillo F, Pargellis C, Regan J (2002) Curr Top Med Chem 2:1021

    Article  CAS  Google Scholar 

  22. Stelmach E, Liu L, Patel B, Pivnichny V, Scapin G, Singh B Hop CECA, Wang Z, Strauss JR, Cameron PM, Nichols EA, O’Keefe SJ, O’Neill EA, Schmatz DM, Schwartz CD, Thompson CM, Dennis M, Zaller DM, Doherty JB (2003) Bioorg Med Chem Lett 13:277

    Article  CAS  Google Scholar 

  23. Lee M, Dominguez C (2005) Cur Med Chem 12:2979

    Article  CAS  Google Scholar 

  24. Dumas J, Hatoum-Mokda H, Siblety R, Riedl B, Scott J, Monahan MK, Lowinger TB, Brennan C, Natero R, Turner T, Johnson JS, Schoenleber R, Bhargava A, Wilhelm SM, Housley TJ, Ranges GE, Shrikhande A (2000) Bioorg Med Chem Letts 10:2051

    Article  CAS  Google Scholar 

  25. Dumas J, Hatoum-Mokda H, Siblety R, Riedl B, Scott J, Khire U, Lee W, Wood J, Wolanin D, Cooley J, Bankston D, Redman AM, Schoenleber R, Caringal Y, Gunn D, Romero R, Osterhout M, Paulsen H, Housley TJ, Wilhelm SM, Pirro J, Chien D, Ranges GE, Shrikhande A, Muzsi A, Bortolon E, Wakefield J, Ostravage CG, Bhargava A, Chaub T (2002) Bioorg Med Chem Letts 12:1559

    Article  CAS  Google Scholar 

  26. Regan J, Pargellis CA, Cirillo PF, Gilmore T, Hickey ER, Peet GW, Proto A, Swinamer A, Moss N (2003) Bioorg Med Chem Letts 13:3101

    Article  CAS  Google Scholar 

  27. Pargellis C, Tong L, Churchill L, Cirrillo F, Gilmore T, Graham AG, Grob PM, Hickey ER, Moss N, Pav S, Regan J (2002) Nat Struct Biol 9:268

    Article  CAS  Google Scholar 

  28. Cramer D, Patterson E, Bunce D (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  29. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130

    Article  CAS  Google Scholar 

  30. Klebe G, Abraham U (1999) J Comp Aided Mol Des 13:1

    Article  CAS  Google Scholar 

  31. Sybyl 6.9, Tripos Inc., 1699 S. Hanley Rd., St Leuis, MO 63144 USA

  32. Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) J Chem Inf Comput Sci 29:163

    Article  CAS  Google Scholar 

  33. Geladi P (1998) J Chemon 2:231

    Article  Google Scholar 

  34. Cramer RD, Bunce D, Patterson E (1988) Quant Struct Act Relat 7:18

    Article  Google Scholar 

  35. GOLD, version 2.2, Cambridge Crystallographic Data Centre: Cambridge, U.K

  36. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470

    Article  CAS  Google Scholar 

  37. Kramer B, Rarey M, Lengauer T (1999) Proteins: Str Func Genet 37:228

    Article  CAS  Google Scholar 

  38. Goodsell DS, Olson AJ (1990) Proteins: Str Func Genet 8:195

    Article  CAS  Google Scholar 

  39. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RG thanks AICTE for providing the financial assistance and PS thanks CSIR for a senior research fellowship. The Director of IICT is thanked for his continued encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Narahari Sastry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, R.G., Srivani, P., Achaiah, G. et al. Strategies to design pyrazolyl urea derivatives for p38 kinase inhibition: a molecular modeling study. J Comput Aided Mol Des 21, 155–166 (2007). https://doi.org/10.1007/s10822-006-9092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9092-9

Keywords

Navigation