Skip to main content

Advertisement

Log in

Caco-2 cell permeability modelling: a neural network coupled genetic algorithm approach

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The ability to cross the intestinal cell membrane is a fundamental prerequisite of a drug compound. However, the experimental measurement of such an important property is a costly and highly time consuming step of the drug development process because it is necessary to synthesize the compound first. Therefore, in silico modelling of intestinal absorption, which can be carried out at very early stages of drug design, is an appealing alternative procedure which is based mainly on multivariate statistical analysis such as partial least squares (PLS) and neural networks (NN). Our implementation of neural network models for the prediction of intestinal absorption is based on the correlation of Caco-2 cell apparent permeability (P app) values, as a measure of intestinal absorption, to the structures of two different data sets of drug candidates. Several molecular descriptors of the compounds were calculated and the optimal subsets were selected using a genetic algorithm; therefore, the method was indicated as Genetic Algorithm–Neural Network (GA-NN). A methodology combining a genetic algorithm search with neural network analysis applied to the modelling of Caco-2 P app has never been presented before, although the two procedures have been already employed separately. Moreover, we provide new Caco-2 cell permeability measurements for more than two hundred compounds. Interestingly, the selected descriptors show to possess physico-chemical connotations which are in excellent accordance with the well known relevant molecular properties involved in the cellular membrane permeation phenomenon: hydrophilicity, hydrogen bonding propensity, hydrophobicity and molecular size. The predictive ability of the models, although rather good for a preliminary study, is somewhat affected by the poor precision of the experimental Caco-2 measurements. Finally, the generalization ability of one model was checked on an external test set not derived from the data sets used to build the models. The result obtained is of interesting practical application and underlines that the successful model construction is strictly dependent on the structural space representation of the data set used for model development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lipinsky CA, Lombardo F, Dominy BW, Feeney P (1997) Adv Drug Deliv Rev 23:3

    Article  Google Scholar 

  2. Yamashita F, Hashida M (2004) Drug Metab Pharmacokin 19:327

    Article  CAS  Google Scholar 

  3. Motulsky H, (1995) Intuitive biostatistics, Oxford University Press, New York

    Google Scholar 

  4. Song XH, Yu RQ (1993) Chemom Intell Lab Syst 19:101

    Article  CAS  Google Scholar 

  5. Hirst JD, King RD, Sternberg MJE (1994) Comp Aided Mol Design 8:405

    Article  CAS  Google Scholar 

  6. Breindl A, Beck B, Clark T (1997) J Mol Model 3:142

    Article  CAS  Google Scholar 

  7. Goll ES, Jurs PC (1999) J Chem Inf Comput Sci 39:974

    Article  CAS  Google Scholar 

  8. Patankar SJ, Jurs PC (2000) J Chem Inf Comput Sci 40:706

    Article  CAS  Google Scholar 

  9. Yang L, Wang P, Jiang Y, Chen J (2005) J Chem Inf Model 45:1804

    Article  CAS  Google Scholar 

  10. Wessel MD, Jurs PC (1995) J Chem Inf Model 35:841

    CAS  Google Scholar 

  11. Duprat AF, Huynh T, Dreyfus G (1998) J Chem Inf Comput Sci 38:586

    Article  CAS  Google Scholar 

  12. Hildalgo IJ, Raub TJ, Borchardt RT (1989) Gastroenterology 96:736

    Google Scholar 

  13. Artursson P (1990) J Pharm Sci 79:476

    Article  CAS  Google Scholar 

  14. Artursson P, Karlsson J (1991) Biochem Biophys Res Commun 175:880

    Article  CAS  Google Scholar 

  15. Delie F, Rubas WA (1997) Crit Rev Ther Drug Carrier Syst 14:221

    CAS  Google Scholar 

  16. Fujiwara S, Yamashita F, Hashida M (2002) Int J Pharm 237:95

    Article  CAS  Google Scholar 

  17. Yamashita F, Wanchana S, Hashida M (2002) J Pharm Sci 91:2230

    Article  CAS  Google Scholar 

  18. Molconn-Z software, Hall Associated Consulting, Quincy, MA

  19. Artursson P, Palm K, Luthman K (1996) Adv Drug Deliv Rev 22:67

    Article  CAS  Google Scholar 

  20. Cruciani G, Crivori P, Carrupt PA, Testa B (2000) THEOCHEM -J Mol Struc 503:17

    Article  CAS  Google Scholar 

  21. Sisto A, Caciagli V, Altamura M, Giolitti A, Fedi V, Guidi A, Giannotti D, Harmat N, Nannicini R, Pasqui F, Maggi CA, WO03037916, MENARINI RICERCHE SPA and inventors, 2003

  22. Fattori D, Porcelloni M, D’Andrea P, Rossi C, Altamura M, Maggi CA, WO2004094412, MENARINI RICERCHE SPA and inventors, 2004

  23. Pearlman RS, Concord distributed by Tripos Inc., St. Louis, Missouri, 63144, USA

  24. Crivori P, Cruciani G, Carrupt PA, Testa B (2000) J Med Chem 43:2204

    Article  CAS  Google Scholar 

  25. Cruciani G, Pastor M, Clementi S (2000) In: Gundertofte K, Jørgensen FS (eds) Molecular modeling and prediction of bioactivity. Springer, Berlin, pp 73–82

    Google Scholar 

  26. Guba W, Cruciani G (2000) In: Guntertofte K, Jørgensen FS (eds) Molecular modeling and prediction of bioactivity. Springer, Berlin, pp 89–94

    Google Scholar 

  27. ACD/pKa Batch, Advanced Chemistry Development, Inc.: Toronto ON, Canada, www.acdlabs.com, 2003

  28. Bishop CM, (ed) (1995) Neural networks for pattern recognition. Oxford University Press Inc., New York

    Google Scholar 

  29. Wessel MD, Jurs PC, Tolan JW, Muskal SM (1998) J Chem Inf Comput Sci 38:726

    Article  CAS  Google Scholar 

  30. Agatonovic-Kustrin S, Beresford R, Yusof APM (2001) J Pharm Biomed Anal 25:227

    Article  CAS  Google Scholar 

  31. So SS, Karplus M (1996) J Med Chem 39:1521

    Article  CAS  Google Scholar 

  32. So SS, Karplus M (1996) J Med Chem 39:5246

    Article  CAS  Google Scholar 

  33. Yasri A, Hartsough D (2001) J Chem Inf Comput Sci 41:1218

    Article  CAS  Google Scholar 

  34. Guha R, Jurs PC (2004) J Chem Inf Comput Sci 44:1440

    Article  CAS  Google Scholar 

  35. Marini F, Roncaglioni A, Novič M (2005) J Chem Inf Model 45:1507

    Article  CAS  Google Scholar 

  36. Rogers D, Hopfinger AJ (1994) J Chem Inf Comput Sci 34:854

    Article  CAS  Google Scholar 

  37. Leardi R (2001) J Chemometr 15:559

    Article  CAS  Google Scholar 

  38. Lavine BK, Davidson CE (2003) J Chem Inf Comput Sci 43:1890

    Article  CAS  Google Scholar 

  39. Luke BT (1994) J Chem Inf Comput Sci 34:1279

    Article  CAS  Google Scholar 

  40. Zupan J, Gasteiger J (eds) (1999) Neural networks in chemistry and drug design Wiley-VCH, Weinheim

    Google Scholar 

  41. Levenberg K (1944) Quart Appl Math 2:164

    Google Scholar 

  42. Marquardt D (1963) SIAM J Appl Math 11:431

    Article  Google Scholar 

  43. Gill PE, Murray W (1978) SIAM J Numer Anal 15:977

    Article  Google Scholar 

  44. Hagan MT, Menhaj M (1994) IEEE Transactions on Neural Networks 5:989

    Article  CAS  Google Scholar 

  45. Nguyen D, Widrow B (1990) Proc Int Joint Conference Neural Networks 3:21

    Article  Google Scholar 

  46. Nelson MC, Illingworth WT (eds) (1991) A practical guide to neural nets, Addison-Wesley, Reading, MA USA

    Google Scholar 

  47. Stone M (1974) J R Statist Soc B 36:111

    Google Scholar 

  48. Stone M (1978) Math Operationsforsch Statist Ser Statistics 9:127

    Google Scholar 

  49. Wahaba G, Wold S (1975) Commun Statist 4:1

    Article  Google Scholar 

  50. Perrone MP, Cooper LN (1993) In: Mammone RJ (ed) Artificial neural network for speech and vision. Chapman & Hall, London, pp 126–142

  51. Perrone MP (1993) In: Mozer MC et al (eds) Proceedings Connectionist Models Summer School, Lawrence Erlbaum, Hillsdale NJ, pp 364–371

  52. Yazdanian M, Glynn SL, Wright JL, Hawi A (1998) Pharm Res 15:1490

    Article  CAS  Google Scholar 

  53. Stuper AJ, Brugger WE, Jurs PC (eds) (1979) Computer-assisted studies of chemical structure and biological function. Wiley-Interscience, New York

    Google Scholar 

  54. Lipinski CA (2000) J Pharmacol Toxicol 44:235

    Article  CAS  Google Scholar 

  55. Goodford PJ (1985) J Med Chem 28:849

    Article  CAS  Google Scholar 

  56. GRID 22, Molecular Discovery Ltd., http://www.moldiscovery.com

Download references

Acknowledgment

A. D. F. is grateful to Menarini Ricerche SpA for a post-doctoral fellowship allowing her to carry out research activity at IPCF, and to Dr. Giovanni Barcaro (IPCF, CNR, Pisa), Dr. Roberto Bartolini (ILC, CNR, Pisa) and Dr. Marco Galimberti (IPCF, CNR, Pisa) for several helpful discussions. We thank Dr. Rose-Marie Catalioto (Menarini Ricerche S.p.A, Firenze) who performed the Caco-2 Papp measurements and Dr. Antonio Triolo (Menarini Ricerche S.p.A., Firenze) for MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armida Di Fenza.

Electronic supplementary material

Below is the link to the electronic supplementary material

10822_2006_9098_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Fenza, A., Alagona, G., Ghio, C. et al. Caco-2 cell permeability modelling: a neural network coupled genetic algorithm approach. J Comput Aided Mol Des 21, 207–221 (2007). https://doi.org/10.1007/s10822-006-9098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9098-3

Keywords