Skip to main content

Advertisement

Log in

Comparative QSAR studies on PAMPA/modified PAMPA for high throughput profiling of drug absorption potential with respect to Caco-2 cells and human intestinal absorption

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Despite the dramatic increase in speed of synthesis and biological evaluation of new chemical entities, the number of compounds that survive the rigorous processes associated with drug development is low. Thus, an increased emphasis on thorough ADMET (absorption, distribution, metabolism, excretion and toxicity) studies based on in vitro and in silico approaches allows for early evaluation of new drugs in the development phase. Artificial membrane permeability measurements afford a high throughput, relatively low cost but labor intensive alternative for in vitro determination of drug absorption potential; parallel artificial membrane permeability assays have been extensively utilized to determine drug absorption potentials. The present study provides comparative QSAR analysis on PAMPA/modified PAMPA for high throughput profiling of drugs with respect to Caco-2 cells and human intestinal absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ekins S, Waller CL, Swaan PW, Cruciani G, Wrighton SA, Wikel JH (2001) J Pharmacol Toxicol Methods 44:251

    Article  Google Scholar 

  2. Norris DA, Leesman GD, Sinko PJ, Grass GM (2000) J Control Release 65:55

    Article  CAS  Google Scholar 

  3. Kansy M, Senner F, Gubernator K (1998) J Med Chem 41:1007

    Article  CAS  Google Scholar 

  4. Thompson M, Krull UJ, Worsfold PJ (1980) Anal Chim Acta 117:133

    Article  CAS  Google Scholar 

  5. Ruell J (2003) Modern Drug Discov 6:28

    CAS  Google Scholar 

  6. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) J Med Chem 45:2615

    Article  CAS  Google Scholar 

  7. Kerns EH (2001) J Pharm Sci 90:1838

    Article  CAS  Google Scholar 

  8. Wohnsland F, Faller B (2001) J Med Chem 44:923

    Article  CAS  Google Scholar 

  9. Kerns EH, Di L, Petuskey S, Farris M, Ley R, Jupp P (2004) J Pharm Sci 93:1440

    Article  CAS  Google Scholar 

  10. Avdeef A, Testa B (2001) Cell Mol Life Sci 59:1681–1689

    Article  Google Scholar 

  11. Sugano K, Hamada H, Machida M, Ushio H (2001) J Biomol Screen 6:189

    Article  CAS  Google Scholar 

  12. Proulx P (1991) Biochim Biophys Acta 1071:255

    CAS  Google Scholar 

  13. Sugano K, Takata N, Machida M, Saitoh K, Terada K (2002) Int J Pharm 241:241

    Article  CAS  Google Scholar 

  14. Di L, Kerns EH, Fan K, McConnell OJ, Carter GT (2003) Eur J Med Chem 38:223

    Article  CAS  Google Scholar 

  15. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Nature 194:178

    Article  CAS  Google Scholar 

  16. Hansch C, Leo A (1995) In: Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington D.C.

    Google Scholar 

  17. Selassie CD, Garg R, Kapur S, Kurup A, Verma RP, Mekapati SB, Hansch C (2002) Chem Rev 102:2585

    Article  CAS  Google Scholar 

  18. Selassie CD, Mekapati SB, Verma RP (2002) Curr Top Med Chem 2:1357

    Article  CAS  Google Scholar 

  19. C-QSAR program, BioByte Corp., 201 W. 4th st., Suit 204, Claremont, CA 91711. www.biobyte.com

  20. Hansch C, Leo A, Hoekman D (1995) In: Exploring QSAR: hydrophobic, electronic, and steric constants. American Chemical Society, Washington D.C.

    Google Scholar 

  21. Hansch C, Gao H, Hoekman D (1998) In: Devillers J (ed) Comparative QSAR, Taylor and Francis, London

  22. Hansch C, Hoekman D, Leo A, Weininger D, Selassie CD (2002) Chem Rev 102:783

    Article  CAS  Google Scholar 

  23. Cramer RD III, Bunce JD, Patterson DE, Frank IE (1988) Quant Struct-Act Relat 7:18

    Article  Google Scholar 

  24. Kansy M, Fischer H, Kratzat K, Senner F, Wagner B, Parrilla I (2001) In: Conference Proceeding of the pharmacokinetic optimization drugs Research: Biological, Physicochemical and Computational Strategies, Switzerland, Mar. 5–9, 2000, Verlag Helvetica Chemica Acta, pp 447–464

  25. Zhu C, Jiang L, Chen T-M, Hwang K-K (2002) Eur J Med Chem 37:399

    Article  CAS  Google Scholar 

  26. Sugano K, Hamada H, Machida M, Ushio H, Saitoh K, Terada K (2001) Int J Pharm 228:181

    Article  CAS  Google Scholar 

  27. Sugano K, Nabuchi Y, Machida M, Aso Y (2003) Int J Pharm 257:245

    Article  CAS  Google Scholar 

  28. Hidalgo IJ (2001) Curr Top Med Chem 1:385

    Article  CAS  Google Scholar 

  29. Clark DE (2001) Comb Chem High Throughput Screen 4:477

    CAS  Google Scholar 

  30. Goodwin JT, Conradi RA, Ho NFH, Burton PS (2001) J Med Chem 44:3721

    Article  CAS  Google Scholar 

  31. Palm K, Luthmann K, Ungell AL, Strandlund G, Artusson P (1996) J Pharm Sci 85:32

    Article  CAS  Google Scholar 

  32. Clark DE (1999) J Pharm Sci 88:815

    Article  CAS  Google Scholar 

  33. Oprea TI, Gottfries J (1999) J Mol Graph Model 17:261

    Article  CAS  Google Scholar 

  34. Paterson DW, Conradi RA, Hilgers AR, Vidmar TJ, Burton PS (1994)Quant Struct-Act Relat 13:4

    CAS  Google Scholar 

  35. Oprea TI (2000) J Comput Aided Mol Des 14:251

    Article  CAS  Google Scholar 

  36. Ren S, Das A, Lien EJ (1996) J Drug Target 4:103

    CAS  Google Scholar 

  37. Norinder U, Osterburg T (2001) J Pharm Sci 90:1076

    Article  CAS  Google Scholar 

  38. Corti G, Maestrelli F, Cirri M, Zerrouk N, Mura P (2006) Eur J Pharm Sci 27:354

    Article  CAS  Google Scholar 

  39. Fujikawa M, Ano R, Nakao K, Shimizu R, Akamatsu M (2005) Bioorg Med Chem 13:4721

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This is dedicated to Yvonne Martin for her seminal contributions to QSAR: as a pioneer and innovative practitioner as well as a strong advocate for the science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia D. Selassie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, R.P., Hansch, C. & Selassie, C.D. Comparative QSAR studies on PAMPA/modified PAMPA for high throughput profiling of drug absorption potential with respect to Caco-2 cells and human intestinal absorption. J Comput Aided Mol Des 21, 3–22 (2007). https://doi.org/10.1007/s10822-006-9101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9101-z

Keywords

Navigation