Skip to main content
Log in

Using a pharmacophore representation concept to elucidate molecular similarity of dopamine antagonists

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The pharmacophoric concept plays an important role in ligand-based drug design methods to describe the similarity and diversity of molecules, and could also be exploited as a molecular representation scheme. A three-point pharmacophore method was used as a molecular representation perception. This procedure was implemented for dopamine antagonists of the D2 receptor subtype. The molecular structures of the antagonists included in this analysis were categorized into two structurally distinct classes. Using structural superposition with internal energy minimization, two pharmacophore models were deduced. Based on these two models other D2 antagonists that fulfil them were derived and studied. This procedure aided the identification of the common 3D patterns present in diverse molecules that act at the same biological target and the extraction of a common molecular framework for the two structural classes. The pharmacophoric information was found to be suitable for guiding superposition of structurally diverse molecules, using a more biologically meaningful selection of the targeting points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mason JS, Good AC, Martin EJ (2001) Curr Pharm Des 7:567

    Article  CAS  Google Scholar 

  2. Bender A, Glen RC (2004) Org Biomol Chem 2:3204

    Article  CAS  Google Scholar 

  3. Willett P, Barnard J, Downs G (1998) J Chem Inf Comput Sci 38:983

    Article  CAS  Google Scholar 

  4. Kubinyi H (2002) J Braz Chem Soc 13:717

    Article  CAS  Google Scholar 

  5. Jackson DM, Westlind DA (1994) Pharmacol Ther 64:291

    Article  CAS  Google Scholar 

  6. Strange PG (1996) Adv Drug Res 28:314

    Google Scholar 

  7. Seeman P (1995) Sci Am Sci Med 2:28

    Google Scholar 

  8. Meltzer HY, Matsubara S, Lee JC (1989) J Pharmacol Exp Ther 251:238

    CAS  Google Scholar 

  9. Allen FH (2002) Acta Crystallogr B 58:380

    Article  CAS  Google Scholar 

  10. Goede A, Dunkel M, Mester N, Frommel C, Preissner R (2005) Bioinformatics 21:1751

    Article  CAS  Google Scholar 

  11. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G (2003) Nucleic Acids Res 31:294

    Article  CAS  Google Scholar 

  12. Roth BL, Kroeze WK, Patel S, Lopez E (2000) Neuroscientist 6:252

    Article  CAS  Google Scholar 

  13. Seeman P (2002) Can J Psychiatry 47:29

    Google Scholar 

  14. Kalani MYS, Vaidehi N, Hall SE, Trabanino RJ, Freddolino PL, Kalani MA, Floriano WB, Kam VWT, Goddard WA III (2004) Proc Natl Acad Sci USA 101:3815

    Article  CAS  Google Scholar 

  15. Wouters J, Ooms F (2001) Curr Pharm Des 7:529

    Article  CAS  Google Scholar 

  16. Bostrom J, Norrby PO, Liljefors T (1998) J Comput Aided Mol Des 12:383

    Article  CAS  Google Scholar 

  17. Bostrom J (2001) J Comput Aided Mol Des 15:1137

    Article  CAS  Google Scholar 

  18. Kirchmair J, Wolber G, Laggner C, Langer T (2006) J Chem Inf Model 46:1848

    Article  CAS  Google Scholar 

  19. Lemmen C, Lengauer T, Klebe G (1998) J Med Chem 41:4502

    Article  CAS  Google Scholar 

  20. Wolber G, Langer T (2005) J Chem Inf Model 45:160

    CAS  Google Scholar 

  21. Eliopoulos E (1984) The structure of β-lactoglobulin and the development of computer programs for the study of molecular conformations and interactions, Ph.D. thesis, Department of Biophysics, University of Leeds

  22. van Wijngaarden I, Kruse CG, van Hes R, van der Heyden JA, Tulp MT (1987) A new class of potential antipsychotics. 1. J Med Chem 30:2099

    Google Scholar 

  23. van de Waterbeemd H, Testa B (1983) J Med Chem 26:203

    Article  Google Scholar 

  24. Messer WS (2000) Medicinal chemistry II MBC 3320–neuroleptics. Neuroscience at the University of Toledo (retrieved from http://www.neurosci.pharm.utoledo.edu/MBC3320/neuroleptics.htm, 15 June 2006)

  25. Henry DR, Guner OF (1995) Techniques for searching databases of three-dimensional (3D) structures with receptor-based queries. Electronic Conferences on Trends in Organic Chemistry (ECTOC-1)

  26. Sheridan RP, Rusinko A III, Nilakantan R, Venkataraghavan R (1989) Proc Natl Acad Sci USA 86:8165

    Article  CAS  Google Scholar 

  27. Matter H (1997) J Med Chem 40:1219

    Article  CAS  Google Scholar 

  28. Olson GL, Cheung HC, Morgan KD, Blount JF, Todaro L, Berger L (1981) J Med Chem 24:1026

    Article  CAS  Google Scholar 

  29. Thimm M, Goede A, Hougardy S, Preissner R (2004) J Chem Inf Comput Sci 44:1816

    Article  CAS  Google Scholar 

  30. Lloyd EJ, Andrews PR (1986) J Med Chem 29:453

    Article  CAS  Google Scholar 

  31. Froimowitz M, Riimsby S (1991) J Med Chem 34:1707

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to gratefully acknowledge Professor Stavros Hamodrakas for his advices and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Atlamazoglou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atlamazoglou, V., Thireou, T. & Eliopoulos, E. Using a pharmacophore representation concept to elucidate molecular similarity of dopamine antagonists. J Comput Aided Mol Des 21, 239–249 (2007). https://doi.org/10.1007/s10822-007-9110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9110-6

Keywords

Navigation