Skip to main content
Log in

Calculations of protein-ligand binding entropy of relative and overall molecular motions

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In the context of virtual database screening, calculations of protein-ligand binding entropy of relative and overall molecular motions are challenging, owing to the inherent structural complexity of the ligand binding well in the energy landscape of protein-ligand interactions and computing time limitations. We describe a fast statistical thermodynamic method for estimation the binding entropy to address the challenges. The method is based on the integration of the configurational integral over clusters obtained from multiple docked positions. We apply the method in conjunction with 11 popular scoring functions (AutoDock, ChemScore, DrugScore, D-Score, F-Score, G-Score, LigScore, LUDI, PLP, PMF, X-Score) to evaluate the binding entropy of 100 protein-ligand complexes. The averaged values of binding entropy contribution vary from 6.2 to 9.1 kcal/mol, showing good agreement with literature. We calculate positional sizes and the angular volume of the native ligand wells. The averaged geometric mean of positional sizes in principal directions varies from 0.8 to 1.4 Å. The calculated range of angular volumes is 3.3−11.8 rad2. Then we demonstrate that the averaged six-dimensional volume of the native well is larger than the volume of the most populated non-native well in energy landscapes described by all of 11 scoring functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Taylor RD, Jewsbury PJ, Essex JW (2002) J Comput Aided Mol Des 16:151

    Article  CAS  Google Scholar 

  2. Gohlke H, Klebe G (2002) Angew Chem Int Ed 41:2644

    Article  CAS  Google Scholar 

  3. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Protein Struct Funct Bioinf 47:409

    Article  CAS  Google Scholar 

  4. Brooijmans N, Kuntz I (2003) Annu Rev Biophys Biomol Struct 32:335

    Article  CAS  Google Scholar 

  5. Shoichet BK (2004) Nature 432:862

    Article  CAS  Google Scholar 

  6. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nat Rev Drug Discovery 3:935

    Article  CAS  Google Scholar 

  7. Stockwell BR (2004) Nature 432:846

    Article  CAS  Google Scholar 

  8. Cole JC, Murray CW, Nissink JWM, Taylor RD, Taylor R (2005) Prot Str Func Bioinf 60:325

    Article  CAS  Google Scholar 

  9. Sousa SF, Fernandes PA, Ramos MJ (2006) Prot Struct Funct Bioinf 65:15

    Article  CAS  Google Scholar 

  10. Gilson MK, Given JA, Bush BL, McCammon JA (1997) Biophys J 72:1047

    CAS  Google Scholar 

  11. Gilson MK, Given JA, Head MS (1997) Chem Biol 4:87

    Article  CAS  Google Scholar 

  12. Wang W, Donini O, Reyes CM, Kollman PA (2001) Annu Rev Biophys Biomol Struct 30:211

    Article  CAS  Google Scholar 

  13. Villa A, Zangi R, Pieffet G, Mark AE (2003) J Comput Aided Mol Des 17:673

    Article  CAS  Google Scholar 

  14. Hermans J, Wang L (1997) J Am Chem Soc 119:2707

    Article  CAS  Google Scholar 

  15. Essex JW, Severance DL, Tirado-Rives J, Jorgensen WL (1997) J Phys Chem B 101:9663

    Article  CAS  Google Scholar 

  16. Bostrom J, Norrby PO, Liljefors T (1998) J Comp Aided Mol Des 12:383

    Article  CAS  Google Scholar 

  17. Lee MS, Salsbury FR Jr, Brooks CL III (2002) J Chem Phys 116:10606

    Article  CAS  Google Scholar 

  18. Baginski M, Fogolari F, Briggs JM (1997) J Mol Biol 274: 253

    Article  CAS  Google Scholar 

  19. Luo H, Sharp K (2002) Proc Natl Acad Sci USA 19:10399

    Article  CAS  Google Scholar 

  20. Swanson JMJ, Henchman RH, McCammon JA (2004) Biophys J 86:67

    CAS  Google Scholar 

  21. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639

    Article  CAS  Google Scholar 

  22. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727

    Article  CAS  Google Scholar 

  23. Ewing TJA, Makino S, Skillman AG, Kuntz ID (2001) J Comput Aided Mol Des 15:411

    Article  CAS  Google Scholar 

  24. Cerius2, version 4.6; Accelrys Inc.; http: www.accelrys.com

  25. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Chem Biol 2:317

    Article  CAS  Google Scholar 

  26. Böhm HJ (1994) J Comput Aided Mol Des 8:243

    Article  Google Scholar 

  27. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470

    Article  CAS  Google Scholar 

  28. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) J Comput Aided Mol Des 11:425

    Article  CAS  Google Scholar 

  29. Wang R, Lai L, Wang S (2002) J Comput Aided Mol Des 16:11

    Article  CAS  Google Scholar 

  30. Muegge I, Martin YC (1999) J Med Chem 42:791

    Article  CAS  Google Scholar 

  31. Gohlke H, Hendlich M, Klebe G (2000) J Mol Biol 295:337

    Article  CAS  Google Scholar 

  32. Ruvinsky AM, Kozintsev AV (2005) Prot Str Func Bioinf 58:845

    Article  CAS  Google Scholar 

  33. Bissantz C, Folkers G, Rognan D (2000) J Med Chem 43:4759

    Article  CAS  Google Scholar 

  34. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW (2000) J Comput Aided Mol Des 14:731

    Article  CAS  Google Scholar 

  35. Wang R, Lu Y, Wang S (2003) J Med Chem 46:2287

    Article  CAS  Google Scholar 

  36. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL III (2004) J Med Chem 47:3032

    Article  CAS  Google Scholar 

  37. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49:5912

    Article  CAS  Google Scholar 

  38. Leach AR, Shoichet BK, Peishoff CE (2006) J Med Chem 49:5851

    Article  CAS  Google Scholar 

  39. Ajay, Murcko MA, Stouten PFW (1997) In: Charifson PS (eds) Practical application of computer-aided drug design. Marcel Dekker Inc, New York, pp 355–411

    Google Scholar 

  40. Murray CW, Verdonk ML (2002) J Comp-Aided Mol Des 16:741

    Article  CAS  Google Scholar 

  41. Murray CW, Verdonk ML (2006) In: Jahnke W, Erlanson DA, Mannhold R, Kubinyi H, Folkers G (eds), Fragment-based approaches in drug discovery. WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, pp 55-66

    Chapter  Google Scholar 

  42. Pratt LR, Chandler D (1977) J Chem Phys 67:3683

    Article  CAS  Google Scholar 

  43. Shoichet BK, Leach AR, Kuntz ID (1999) Prot Str Funct Bio 34:4

    Article  CAS  Google Scholar 

  44. Steinberg IZ, Scheraga HA (1963) J Biol Chem 283:172

    Google Scholar 

  45. Erickson HP (1989) J Mol Biol 206:465

    Article  CAS  Google Scholar 

  46. Finkelstein AV, Janin J (1989) Prot Eng 3:1

    Article  CAS  Google Scholar 

  47. Ben-Tal N, Honig B, Bagdassarian CK, Ben-Shaul A (2000) Biophys J 79:1180

    CAS  Google Scholar 

  48. Yu YB, Privalov PL, Hodges RS (2001) Biophys J 81:1632

    CAS  Google Scholar 

  49. Ruvinsky AM, Kozincev AV (2005) J Comput Chem 26:1089

    Article  CAS  Google Scholar 

  50. Ruvinsky AM (2007) J Comput Chem 28:1364

    Article  CAS  Google Scholar 

  51. Page MI, Jencks WP (1971) Proc Natl Acad Sci USA 68:1678

    Article  CAS  Google Scholar 

  52. Levitt M, Sander C, Stern PS (1985) J Mol Biol 181:423

    Article  CAS  Google Scholar 

  53. Tidor B, Karplus M (1994) J Mol Biol 238:405

    Article  CAS  Google Scholar 

  54. Doig AJ, Sternberg MJE (1995) Prot Sci 4:2247

    CAS  Google Scholar 

  55. Tirado-Rives J, Jorgensen WL (2006) J Med Chem 49:5880

    Article  CAS  Google Scholar 

  56. Baker BM, Murphy KP (1996) Biophys J 71:2049

    Article  CAS  Google Scholar 

  57. Bradshaw JM, Waksman G (1998) Biochem 37:15400

    Article  CAS  Google Scholar 

  58. Karplus M, Janin J (1999) Prot Eng 12:185

    Article  CAS  Google Scholar 

  59. Lazaridis T, Masunov A, Gandolfo F (2002) Prot Str Func Bioinf 47:194

    Article  CAS  Google Scholar 

  60. Minh DDL, Bui JM, Chang CE, Jain T, Swanson JM, McCammon JA (2005) Biophys J 89:L25

    Article  CAS  Google Scholar 

  61. Balog E, Becker T, Oettl M, Lechner R, Daniel R, Finney J, Smith JC (2004) Phys Rev Lett 93:028103

    Article  CAS  Google Scholar 

  62. Lee SA, Rupprecht A, Chen YZ (1998) Phys Rev Lett 80:2241

    Article  CAS  Google Scholar 

  63. Leach AR (ed) (1996) Molecular modelling: principles and applications. Longman, Harlow, p 382

    Google Scholar 

  64. Luo R, Gilson MK (2000) J Am Chem Soc 122:2934

    Article  CAS  Google Scholar 

  65. Carlsson J, Åqvist J (2005) J Phys Chem B 109:6448

    Article  CAS  Google Scholar 

  66. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose PW (2002) Curr Opin Struct Biol 12:197

    Article  CAS  Google Scholar 

  67. Ruvinsky AM, Kozincev AV (2006) Prot Str Funct Bioinf 62:202

    Article  CAS  Google Scholar 

  68. Källblad P, Mancera RL, Todorov NP (2004) J Med Chem 47:3334

    Article  CAS  Google Scholar 

  69. Kortvelyesi T, Silberstein M, Dennis S, Vajda S (2003) J Comp Aided Mol Des 17:173

    Article  CAS  Google Scholar 

  70. Rosenfeld RJ, Goodsell DS, Musah RA, Morris GM, Goodin DB, Olson AJ (2003) J Comp-Aid Mol Des 17:525

    Article  CAS  Google Scholar 

  71. Tovchigrechko A, Vakser IA Prot Sci, 10 (2001) 1572; Ruvinsky AM, Vakser IA, submitted (2007)

  72. Kozakov D, Clodfelter KH, Vajda S, Camacho CJ (2005) Biophys J 89:867

    Article  CAS  Google Scholar 

  73. Wales DJ (2005) Phys Biol 2:S86

    Article  CAS  Google Scholar 

  74. Wales DJ, Scheraga HA (1999) Science 285:1368

    Article  CAS  Google Scholar 

  75. Price MLP, Jorgensen WL (2000) J Am Chem Soc 122:9455

    Article  CAS  Google Scholar 

  76. Head MS, Given JA, Gilson MK (1997) J Phys Chem A 101:1609

    Article  CAS  Google Scholar 

  77. Schaffer L, Verkhivker G (1998) Protein Struct Funct Genet 33:295

    Article  CAS  Google Scholar 

  78. Straub JE (1996) In: Elber R (eds) New Developments in Theoretical Studies of Proteins. World Scientific, Singapore, pp 137

    Google Scholar 

  79. Frauenfelder H, Wolynes PG, Austin RH (1999) Rev Mod Phys 71:S419

    Article  CAS  Google Scholar 

  80. Straub JE, Thirumalai D (1993) Proc Natl Acad Sci 90:809

    Article  CAS  Google Scholar 

  81. Kitao A, Hayward S, Go N (1998) Prot Str Func Genet 33:496

    Article  CAS  Google Scholar 

  82. Shortle D, Simons KT, Baker D (1998) Proc Natl Acad Sci USA 95:11158

    Article  CAS  Google Scholar 

  83. Kubo R (ed) (1988) Statistical mechanics: an advanced course with problems and solutions. Elsevier Science Publishers BV, Amsterdam, p 200

    Google Scholar 

Download references

Acknowledgments

We wish to thank reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly M. Ruvinsky.

Appendix

Appendix

This appendix derives the partition functions of overall and relative rotational motions. It follows the method described by Kubo [83]. The Hamiltonian of a rotator is

$${\begin{array}{l}H=\frac{1}{2I_1\sin^2\theta}\left((p_{\varphi}-p_{\psi}\cos\theta)\cos\psi -p_{\theta}\sin\theta\sin\psi \right)^2+\\\frac{1}{2I_2\sin^2\theta} \left((p_{\varphi}-p_{\psi}\cos\theta)\sin\psi +p_{\theta}\sin\theta\cos\psi \right)^2+\frac{1}{2I_3}p_{\psi}^2\end{array}}$$
(12)

where I 1, I 2, I 3 are the principal moments of inertia of the molecular; (θ, φ, ψ) are Euler angles of rotational motions; (p θ, p φ, p ψ) are the corresponding canonical conjugate moments. The classical formula for the partition function of free rotations is

$${Z_{rot}=\frac{1}{(2\pi\hbar)^3\sigma}\int\limits_0^{\pi} d\theta\int\limits_0^{2\pi} d\psi \int\limits_0^{2\pi} d\varphi\int\limits_{-\infty}^{\infty} dp_{\theta}\int\limits_{-\infty}^{\infty} dp_{\psi}\int\limits_{-\infty}^{\infty}dp_{\varphi}\exp\left(-\frac{H}{k_BT}\right),}$$
(13)

where σ is the order of symmetry of the molecule; \({\hbar}\) is the Planck’s constant. The Hamiltonian in Eq. (12) can be rewritten as

$${\begin{array}{c}H=\frac{1}{2}\left(\frac{\sin^2\psi}{I_1}+\frac{\cos^2\psi}{I_2}\right)\left( p_{\theta}+\left(\frac{1}{I_2}-\frac{1}{I_1}\right)\frac{\sin\psi\cos\psi}{\sin\theta((\sin^2\psi)/I_1+(\cos^2\psi)/I_2)}(p_{\varphi}-p_{\psi}\cos\theta)\right)^2+\\\frac{1}{2I_1I_2\sin^2\theta((\sin^2\psi)/I_1+(\cos^2\psi)/I_2)}(p_{\varphi}-p_{\psi}\cos\theta)^2 +\frac{1}{2I_3}p_{\psi}^2\end{array}}$$
(14)

Substituting Eq. (14) into Eq. (13) and using the Gaussian integral formula

$${\int\limits_{-\infty}^{\infty}\exp\left(-a(x+b)^2\right)dx=\int\limits_{-\infty}^{\infty}\exp\left(-ax^2\right)dx=\left(\frac{\pi}{a}\right)^{1/2},}$$
(15)

we can perform the integrations over the canonical conjugate moments in Eq. (13). Integration over p θ gives

$${(2\pi k_BT)^{1/2}\left(\frac{\sin^2\psi}{I_1}+\frac{\cos^2\psi}{I_2}\right)^{-1/2}}$$
(16)

Integration over p φ gives

$${(2\pi k_BTI_1I_2)^{1/2}\sin\theta\left(\frac{\sin^2\psi}{I_1}+\frac{\cos^2\psi}{I_2}\right)^{1/2}}$$
(17)

Integration over p ψ gives

$${(2\pi k_BTI_3)^{1/2}}$$
(18)

Eqs. (16, 17, 18) and (13) yield the partition function as

$${Z_{rot}=(2\pi k_BT)^{3/2}(I_1I_2I_3)^{1/2}\frac{1}{(2\pi\hbar)^3\sigma}\int\limits_0^{\pi}\sin\theta d\theta \int\limits_0^{2\pi} d\psi \int\limits_0^{2\pi}d\varphi =\frac{(2k_BT)^{3/2}(\pi I_1I_2I_3)^{1/2}}{\sigma\hbar^3}}$$
(19)

The sine of the polar angle in Eq. (19) appears as a result of integrations over the canonical conjugate moments. Thus, the partition function of restricted relative rotations is proportional to

$${\int\limits_{\theta_1}^{\theta_2} \sin\theta d\theta\int\limits_{\psi_1}^{\psi_2} d\psi\int\limits_{\varphi_1}^{\varphi_2}d\varphi=[\cos\theta_1-\cos\theta_2)][\varphi_2-\varphi_1][\psi_2-\psi_1]}$$
(20)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruvinsky, A.M. Calculations of protein-ligand binding entropy of relative and overall molecular motions. J Comput Aided Mol Des 21, 361–370 (2007). https://doi.org/10.1007/s10822-007-9116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9116-0

Keywords

Navigation