Skip to main content

Advertisement

Log in

Toward Mycobacterium tuberculosis DXR inhibitor design: homology modeling and molecular dynamics simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis 1-deoxy-d-xylulose-5-phosphate reductoisomerase (MtDXR) is a potential target for antitubercular chemotherapy. In the absence of its crystallographic structure, our aim was to develop a structural model of MtDXR. This will allow us to gain early insight into the structure and function of the enzyme and its likely binding to ligands and cofactors and thus, facilitate structure-based inhibitor design. To achieve this goal, initial models of MtDXR were generated using MODELER. The best quality model was refined using a series of minimizations and molecular dynamics simulations. A protein–ligand complex was also developed from the initial homology model of the target protein by including information about the known ligand as spatial restraints and optimizing the mutual interactions between the ligand and the binding site. The final model was evaluated on the basis of its ability to explain several site-directed mutagenesis data. Furthermore, a comparison of the homology model with the X-ray structure published in the final stages of the project shows excellent agreement and validates the approach. The knowledge gained from the current study should prove useful in the design and development of inhibitors as potential novel therapeutic agents against tuberculosis by either de novo drug design or virtual screening of large chemical databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kaufmann SH, McMichael AJ (2005) Nat Med 11:S33

    Article  CAS  Google Scholar 

  2. WHO World Health Organization (2006) Fact sheet on tuberculosis. http://www.who.int/mediacentre/factsheets/fs104/en/print.html

  3. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C (2003) Arch Intern Med 163:1009

    Article  Google Scholar 

  4. Singh SK, Verma R, Shah DH (2004) J Vet Sci 5:331

    Google Scholar 

  5. Bloom BR, Murray CJ (1992) Science 257:1055

    Article  CAS  Google Scholar 

  6. Heym B, Honore N, Truffot-Pernot C, Banerjee A, Schurra C, Jacobs WR Jr, van Embden JD, Grosset JH, Cole ST (1994) Lancet 344:293

    Article  CAS  Google Scholar 

  7. Perlman DC, El Sadr WM, Heifets LB, Nelson ET, Matts JP, Chirgwin K, Salomon N, Telzak EE, Klein O, Kreiswirth BN, Musser JM, Hafner R (1997) AIDS 11:1473

    Article  CAS  Google Scholar 

  8. Rattan A, Kalia A, Ahmad N (1998) Emerg Infect Dis 4:195

    Article  CAS  Google Scholar 

  9. Cole ST, Barrell BG (1998) Novartis Found Symp. 217:160

    CAS  Google Scholar 

  10. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV et al (1998) Nature 393:537

    Article  CAS  Google Scholar 

  11. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Biochem J 295:517

    CAS  Google Scholar 

  12. Schwarz MK (1994) Ph.D. Dissertation, Eidgeno ssischen Technischen Hochschule, Zurich

  13. Broers STJ (1994) Ph.D. Dissertation, Eidgeno ssischen Technische Hochschule Zurich, 1994

  14. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Science 285:1573

    Article  CAS  Google Scholar 

  15. Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) Proc Natl Acad Sci U S A 95:9879

    Article  CAS  Google Scholar 

  16. Proteau PJ (2004) Bioorg Chem 32:483

    Article  CAS  Google Scholar 

  17. Lange BM, Croteau R (1999) Proc Natl Acad Sci U S A 96:13714

    Article  CAS  Google Scholar 

  18. Bochar DA, Friesen JA, Stauffacher CV, Rodwell VW (1999) Comprehensive natural product chemistry. Pergamon, Oxford, p 1544

    Google Scholar 

  19. Wolucka BA, McNeil MR, de Hoffmann E, Chojnacki T, Brennan PJ (1994) J Biol Chem 269:23328

    CAS  Google Scholar 

  20. Mahapatra S, Yagi T, Belisle JT, Espinosa BJ, Hill PJ, McNeil MR, Brennan PJ, Crick DC (2005) J Bacteriol 187:2747

    Article  CAS  Google Scholar 

  21. Mikusova K, Mikus M, Besra GS, Hancock I, Brennan PJ (1996) J Biol Chem 271:7820

    Article  CAS  Google Scholar 

  22. Minnikin DE (1982) In: Ratledge C, Stanford J (eds) The biology of Mycobacteria. Academic Press, London, England, p 95

    Google Scholar 

  23. Sprenger GA, Schorken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H (1997) Proc Natl Acad Sci U S A 94:12857

    Article  CAS  Google Scholar 

  24. Mueller C, Schwender J, Zeidler J, Lichtenthaler HK (2000) Biochem Soc Trans 28:792

    Article  CAS  Google Scholar 

  25. Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biochem J 316:73

    CAS  Google Scholar 

  26. Qureshi AA, Porter JW (eds) (1981) Biosynthesis of isoprenoids. John Wiley, New York, p 47

    Google Scholar 

  27. Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M, Boronat A (1998) Proc Natl Acad Sci U S A 95:2105

    Article  CAS  Google Scholar 

  28. Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998) Tetrahedron Lett 39:7913

    Article  CAS  Google Scholar 

  29. Lell B, Ruangweerayut R, Wiesner J, Missinou MA, Schindler A, Baranek T, Hintz M, Hutchinson D, Jomaa H, Kremsner PG (2003) Antimicrob Agents Chemother 47:735

    Article  CAS  Google Scholar 

  30. Dhiman RK, Schaeffer ML, Bailey AM, Testa CA, Scherman H, Crick DC (2005) J Bacteriol 187:8395

    Article  CAS  Google Scholar 

  31. Missinou MA, Borrmann S, Schindler A, Issifou S, Adegnika AA, Matsiegui PB, Binder R, Lell B, Wiesner J, Baranek T, Jomaa H, Kremsner PG (2002) Lancet 360:1941

    Article  CAS  Google Scholar 

  32. Rodriguez-Concepcion M, Campos N, Maria Lois L, Maldonado C, Hoeffler JF, Grosdemange-Billiard C, Rohmer M, Boronat A (2000) FEBS Lett 473:328

    Article  CAS  Google Scholar 

  33. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K et al (2003) Proc Natl Acad Sci U S A 100:4678

    Article  CAS  Google Scholar 

  34. Whittle PJ, Blundell TL (1994) Annu Rev Biophys Biomol Struct 23:349

    Article  CAS  Google Scholar 

  35. Blundell TL (1996) Nature 384:23

    Article  CAS  Google Scholar 

  36. Burley SK (2000) Nat Struct Biol 7 Suppl:932

    Article  CAS  Google Scholar 

  37. Kroemer RT, Doughty SW, Robinson AJ, Richards WG (1996) Protein Eng 9:493

    Article  CAS  Google Scholar 

  38. Baker D, Sali A (2001) Science 294:93

    Article  CAS  Google Scholar 

  39. Reuter K, Sanderbrand S, Jomaa H, Wiesner J, Steinbrecher I, Beck E, Hintz M, Klebe G, Stubbs MT (2002) J Biol Chem 277:5378

    Article  CAS  Google Scholar 

  40. Yajima S, Nonaka T, Kuzuyama T, Seto H, Ohsawa K (2002) J Biochem (Tokyo) 131:313

    CAS  Google Scholar 

  41. Steinbacher S, Kaiser J, Eisenreich W, Huber R, Bacher A, Rohdich F (2003) J Biol Chem 278:18401

    Article  CAS  Google Scholar 

  42. Yajima S, Hara K, Sanders JM, Yin F, Ohsawa K, Wiesner J, Jomaa H, Oldfield E (2004) J Am Chem Soc 126:10824

    Article  CAS  Google Scholar 

  43. Mac Sweeney A, Lange R, Fernandes RP, Schulz H, Dale GE, Douangamath A, Proteau PJ, Oefner C (2005) J Mol Biol 345:115

    Article  CAS  Google Scholar 

  44. Ricagno S, Grolle S, Bringer-Meyer S, Sahm H, Lindqvist Y, Schneider G (2004) Biochim Biophys Acta 1698:37

    CAS  Google Scholar 

  45. Lee KW, Briggs JM (2004) Proteins 54:693

    Article  CAS  Google Scholar 

  46. Krieger E, Nabuurs SB, Vriend G (2003) Methods Biochem Anal 44:509

    Article  CAS  Google Scholar 

  47. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673

    Article  CAS  Google Scholar 

  48. Sali A, Blundell TL (1993) J Mol Biol 234:779

    Article  CAS  Google Scholar 

  49. Henikoff S, Henikoff JG (1992) Proc Natl Acad Sci U S A 89:10915

    Article  CAS  Google Scholar 

  50. Fiser A, Do RK, Sali A (2003) Protein Sci 9:1753

    Article  Google Scholar 

  51. InsightII Molecular Modeling Program Package, Accelrys: 9685 Sranton Road, San Diego, CA 92121-3752, USA, 2005

  52. Argyrou A, Blanchard JS (2004) Biochemistry 43:4375

    Article  CAS  Google Scholar 

  53. Brickmann J (1997) MOLCAD-MOLecular Computer Aided Design, Darmstadt University of Technology. The major part of the MOLCAD program is included in the SYBYL package of TRIPOS associates, St. Louis, MI, USA

  54. Heiden W, Moeckel G, Brickmann J (1993) J Comput Aided Mol Des 7:503

    Article  CAS  Google Scholar 

  55. Bellamacina CR (1996) FASEB J 10:1257

    CAS  Google Scholar 

  56. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 1993:283

    Article  Google Scholar 

  57. Henriksson LM, Bjorkelid C, Mowbray SL, Unge T (2006) Acta Crystallogr D Biol Crystallogr 62:807

    Article  CAS  Google Scholar 

  58. Singh N, Cheve G, Avery MA, McCurdy CR (2006) J Chem Inf Model 46:1360

    Article  CAS  Google Scholar 

  59. Kuzuyama T, Takahashi S, Takagi M, Seto H (2000) J Biol Chem 275:19928

    Article  CAS  Google Scholar 

  60. Rost B, Sander C (1999) J Mol Biol 232:584

    Article  Google Scholar 

  61. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235

    Article  CAS  Google Scholar 

  62. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comp Chem 4:187

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is funded by the CDC Cooperative agreement number U50/CCU423310-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. McCurdy.

Electronic supplementary material

Supporting information available: Analysis of the MtDXR models using MODELER, Profile 3-D and PROSTAT (Table S1). This material is available free of charge via the Internet at http://pubs.acs.org

10822_2007_9132_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N., Avery, M.A. & McCurdy, C.R. Toward Mycobacterium tuberculosis DXR inhibitor design: homology modeling and molecular dynamics simulations. J Comput Aided Mol Des 21, 511–522 (2007). https://doi.org/10.1007/s10822-007-9132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9132-0

Keywords

Navigation