Abstract
Mycobacterium tuberculosis 1-deoxy-d-xylulose-5-phosphate reductoisomerase (MtDXR) is a potential target for antitubercular chemotherapy. In the absence of its crystallographic structure, our aim was to develop a structural model of MtDXR. This will allow us to gain early insight into the structure and function of the enzyme and its likely binding to ligands and cofactors and thus, facilitate structure-based inhibitor design. To achieve this goal, initial models of MtDXR were generated using MODELER. The best quality model was refined using a series of minimizations and molecular dynamics simulations. A protein–ligand complex was also developed from the initial homology model of the target protein by including information about the known ligand as spatial restraints and optimizing the mutual interactions between the ligand and the binding site. The final model was evaluated on the basis of its ability to explain several site-directed mutagenesis data. Furthermore, a comparison of the homology model with the X-ray structure published in the final stages of the project shows excellent agreement and validates the approach. The knowledge gained from the current study should prove useful in the design and development of inhibitors as potential novel therapeutic agents against tuberculosis by either de novo drug design or virtual screening of large chemical databases.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Kaufmann SH, McMichael AJ (2005) Nat Med 11:S33
WHO World Health Organization (2006) Fact sheet on tuberculosis. http://www.who.int/mediacentre/factsheets/fs104/en/print.html
Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C (2003) Arch Intern Med 163:1009
Singh SK, Verma R, Shah DH (2004) J Vet Sci 5:331
Bloom BR, Murray CJ (1992) Science 257:1055
Heym B, Honore N, Truffot-Pernot C, Banerjee A, Schurra C, Jacobs WR Jr, van Embden JD, Grosset JH, Cole ST (1994) Lancet 344:293
Perlman DC, El Sadr WM, Heifets LB, Nelson ET, Matts JP, Chirgwin K, Salomon N, Telzak EE, Klein O, Kreiswirth BN, Musser JM, Hafner R (1997) AIDS 11:1473
Rattan A, Kalia A, Ahmad N (1998) Emerg Infect Dis 4:195
Cole ST, Barrell BG (1998) Novartis Found Symp. 217:160
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV et al (1998) Nature 393:537
Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Biochem J 295:517
Schwarz MK (1994) Ph.D. Dissertation, Eidgeno ssischen Technischen Hochschule, Zurich
Broers STJ (1994) Ph.D. Dissertation, Eidgeno ssischen Technische Hochschule Zurich, 1994
Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Science 285:1573
Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) Proc Natl Acad Sci U S A 95:9879
Proteau PJ (2004) Bioorg Chem 32:483
Lange BM, Croteau R (1999) Proc Natl Acad Sci U S A 96:13714
Bochar DA, Friesen JA, Stauffacher CV, Rodwell VW (1999) Comprehensive natural product chemistry. Pergamon, Oxford, p 1544
Wolucka BA, McNeil MR, de Hoffmann E, Chojnacki T, Brennan PJ (1994) J Biol Chem 269:23328
Mahapatra S, Yagi T, Belisle JT, Espinosa BJ, Hill PJ, McNeil MR, Brennan PJ, Crick DC (2005) J Bacteriol 187:2747
Mikusova K, Mikus M, Besra GS, Hancock I, Brennan PJ (1996) J Biol Chem 271:7820
Minnikin DE (1982) In: Ratledge C, Stanford J (eds) The biology of Mycobacteria. Academic Press, London, England, p 95
Sprenger GA, Schorken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H (1997) Proc Natl Acad Sci U S A 94:12857
Mueller C, Schwender J, Zeidler J, Lichtenthaler HK (2000) Biochem Soc Trans 28:792
Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biochem J 316:73
Qureshi AA, Porter JW (eds) (1981) Biosynthesis of isoprenoids. John Wiley, New York, p 47
Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M, Boronat A (1998) Proc Natl Acad Sci U S A 95:2105
Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998) Tetrahedron Lett 39:7913
Lell B, Ruangweerayut R, Wiesner J, Missinou MA, Schindler A, Baranek T, Hintz M, Hutchinson D, Jomaa H, Kremsner PG (2003) Antimicrob Agents Chemother 47:735
Dhiman RK, Schaeffer ML, Bailey AM, Testa CA, Scherman H, Crick DC (2005) J Bacteriol 187:8395
Missinou MA, Borrmann S, Schindler A, Issifou S, Adegnika AA, Matsiegui PB, Binder R, Lell B, Wiesner J, Baranek T, Jomaa H, Kremsner PG (2002) Lancet 360:1941
Rodriguez-Concepcion M, Campos N, Maria Lois L, Maldonado C, Hoeffler JF, Grosdemange-Billiard C, Rohmer M, Boronat A (2000) FEBS Lett 473:328
Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K et al (2003) Proc Natl Acad Sci U S A 100:4678
Whittle PJ, Blundell TL (1994) Annu Rev Biophys Biomol Struct 23:349
Blundell TL (1996) Nature 384:23
Burley SK (2000) Nat Struct Biol 7 Suppl:932
Kroemer RT, Doughty SW, Robinson AJ, Richards WG (1996) Protein Eng 9:493
Baker D, Sali A (2001) Science 294:93
Reuter K, Sanderbrand S, Jomaa H, Wiesner J, Steinbrecher I, Beck E, Hintz M, Klebe G, Stubbs MT (2002) J Biol Chem 277:5378
Yajima S, Nonaka T, Kuzuyama T, Seto H, Ohsawa K (2002) J Biochem (Tokyo) 131:313
Steinbacher S, Kaiser J, Eisenreich W, Huber R, Bacher A, Rohdich F (2003) J Biol Chem 278:18401
Yajima S, Hara K, Sanders JM, Yin F, Ohsawa K, Wiesner J, Jomaa H, Oldfield E (2004) J Am Chem Soc 126:10824
Mac Sweeney A, Lange R, Fernandes RP, Schulz H, Dale GE, Douangamath A, Proteau PJ, Oefner C (2005) J Mol Biol 345:115
Ricagno S, Grolle S, Bringer-Meyer S, Sahm H, Lindqvist Y, Schneider G (2004) Biochim Biophys Acta 1698:37
Lee KW, Briggs JM (2004) Proteins 54:693
Krieger E, Nabuurs SB, Vriend G (2003) Methods Biochem Anal 44:509
Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673
Sali A, Blundell TL (1993) J Mol Biol 234:779
Henikoff S, Henikoff JG (1992) Proc Natl Acad Sci U S A 89:10915
Fiser A, Do RK, Sali A (2003) Protein Sci 9:1753
InsightII Molecular Modeling Program Package, Accelrys: 9685 Sranton Road, San Diego, CA 92121-3752, USA, 2005
Argyrou A, Blanchard JS (2004) Biochemistry 43:4375
Brickmann J (1997) MOLCAD-MOLecular Computer Aided Design, Darmstadt University of Technology. The major part of the MOLCAD program is included in the SYBYL package of TRIPOS associates, St. Louis, MI, USA
Heiden W, Moeckel G, Brickmann J (1993) J Comput Aided Mol Des 7:503
Bellamacina CR (1996) FASEB J 10:1257
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 1993:283
Henriksson LM, Bjorkelid C, Mowbray SL, Unge T (2006) Acta Crystallogr D Biol Crystallogr 62:807
Singh N, Cheve G, Avery MA, McCurdy CR (2006) J Chem Inf Model 46:1360
Kuzuyama T, Takahashi S, Takagi M, Seto H (2000) J Biol Chem 275:19928
Rost B, Sander C (1999) J Mol Biol 232:584
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comp Chem 4:187
Acknowledgment
This work is funded by the CDC Cooperative agreement number U50/CCU423310-02.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Supporting information available: Analysis of the MtDXR models using MODELER, Profile 3-D and PROSTAT (Table S1). This material is available free of charge via the Internet at http://pubs.acs.org
Rights and permissions
About this article
Cite this article
Singh, N., Avery, M.A. & McCurdy, C.R. Toward Mycobacterium tuberculosis DXR inhibitor design: homology modeling and molecular dynamics simulations. J Comput Aided Mol Des 21, 511–522 (2007). https://doi.org/10.1007/s10822-007-9132-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-007-9132-0