Skip to main content
Log in

Virtual screening applications: a study of ligand-based methods and different structure representations in four different scenarios

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Four different ligand-based virtual screening scenarios are studied: (1) prioritizing compounds for subsequent high-throughput screening (HTS); (2) selecting a predefined (small) number of potentially active compounds from a large chemical database; (3) assessing the probability that a given structure will exhibit a given activity; (4) selecting the most active structure(s) for a biological assay. Each of the four scenarios is exemplified by performing retrospective ligand-based virtual screening for eight different biological targets using two large databases—MDDR and WOMBAT. A comparison between the chemical spaces covered by these two databases is presented. The performance of two techniques for ligand-based virtual screening—similarity search with subsequent data fusion (SSDF) and novelty detection with Self-Organizing Maps (ndSOM) is investigated. Three different structure representations—2,048-dimensional Daylight fingerprints, topological autocorrelation weighted by atomic physicochemical properties (sigma electronegativity, polarizability, partial charge, and identity) and radial distribution functions weighted by the same atomic physicochemical properties—are compared. Both methods were found applicable in scenario one. The similarity search was found to perform slightly better in scenario two while the SOM novelty detection is preferred in scenario three. No method/descriptor combination achieved significant success in scenario four.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Walters WP, Stahl MT, Murcko MA (1998) Drug Discov Today 3:160

    Article  CAS  Google Scholar 

  2. Bajorath J (2001) J Chem Inf Model 41:233

    CAS  Google Scholar 

  3. Bajorath J (2002) Nat Rev Drug Discov 1:882

    Article  CAS  Google Scholar 

  4. Oprea TI, Matter H (2004) Curr Opin Chem Biol 8:349

    Article  CAS  Google Scholar 

  5. Willett P, Barnard JM, Downs GM (1998) J Chem Inf Model 38:983

    Article  CAS  Google Scholar 

  6. Bleicher KH, Bohm HJ, Muller K, Alanine A (2003) Nat Rev Drug Discov 2:369

    Article  CAS  Google Scholar 

  7. Kearsley SK, Sallamack S, Fluder EM, Andose JD, Mosley RT, Sheridan RP (1996) J Chem Inf Model 36:118

    CAS  Google Scholar 

  8. Bologa C, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, Parker MA, Tkachenko SE, Savchuck NP, Sklar LA, Oprea TI, Prossnitz ER (2006) Nat Chem Biol 2:207

    Article  CAS  Google Scholar 

  9. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) J Chem Inf Model 44:1177

    Article  CAS  Google Scholar 

  10. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) Org Biomol Chem 2:3256

    Article  CAS  Google Scholar 

  11. Bender A, Jenkins JL, Glick M, Deng Z, Nettles JH, Davies JW (2006) J Chem Inf Model 46:2445

    Article  CAS  Google Scholar 

  12. Chen B, Harrison RF, Papadatos G, Willett P, Wood DJ, Lewell XQ, Greenidge P, Stiefl N (2007) J Comput Aid Mol Des 21:53

    Article  CAS  Google Scholar 

  13. Martin YC, Kofron JL, Traphagen LM (2002) J Med Chem 45:4350

    Article  CAS  Google Scholar 

  14. Matter H (1997) J Med Chem 40:1219

    Article  CAS  Google Scholar 

  15. Martin YC (2006) QSAR Comb Sci 25:1192

    Article  CAS  Google Scholar 

  16. Markou M, Singh S (2003) Signal Process 83:2481

    Article  Google Scholar 

  17. Markou M, Singh S (2003) Signal Process 83:2499

    Article  Google Scholar 

  18. Hristozov D, Oprea TI, Gasteiger J (2007) J Chem Inf Model. http://www.pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ci700040r

  19. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nat Rev Drug Discov 3:935

    Article  CAS  Google Scholar 

  20. Sousa SF, Fernandes PA, Ramos MG (2006) Proteins 65:15

    Article  CAS  Google Scholar 

  21. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49:5912

    Article  CAS  Google Scholar 

  22. MDL Drug Data Report, version 2006.1

  23. Olah M, Mracec M, Ostopovici L, Rad R, Bora A, Hadaruga N, Olah I, Banda M, Simon Z, Mracec M, Oprea TI (2003) In: Oprea TI (ed) Cheminformatics in drug discovery. Wiley-VCH, New York, pp 223–239

    Google Scholar 

  24. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) J Chem Inf Model 44:1177

    CAS  Google Scholar 

  25. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) Org Biomol Chem 2:3256

    Article  CAS  Google Scholar 

  26. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2005) J Med Chem 48:7049

    Article  CAS  Google Scholar 

  27. Taylor R (1995) J Chem Inf Model 35:59

    CAS  Google Scholar 

  28. Butina D (1999) J Chem Inf Model 39:747

    CAS  Google Scholar 

  29. Truchon JF, Bayly CI (2007) J Chem Inf Model 47:488

    Article  CAS  Google Scholar 

  30. Edgar SJ, Holliday JD, Willett P (2000) J Mol Graph Model 18:343

    Article  CAS  Google Scholar 

  31. Hanley JA, McNeil BJ (1982) Radiology 143:29

    CAS  Google Scholar 

  32. Hanley JA, McNeil BJ (1983) Radiology 148:839

    CAS  Google Scholar 

  33. Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO (2005) J Med Chem 48:2534

    Article  CAS  Google Scholar 

  34. Cleves AE, Jain AN (2006) J Med Chem 49:2921

    Article  CAS  Google Scholar 

  35. Witten IH, Eibe F (2000) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San Francisco

    Google Scholar 

  36. Yao YY (1995) J Am Soc Inf Sci 46:133

    Article  Google Scholar 

  37. Whittle M, Gillet VJ, Willett P, Alex A, Loesel J (2004) J Chem Inf Model 44:1840

    CAS  Google Scholar 

  38. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2005) J Med Chem 48:7049

    Article  CAS  Google Scholar 

  39. Kohonen T (2001) Self-organizing maps. Springer, Berlin

    Google Scholar 

  40. Sykora V (2007) Chemical descriptors library. Retrieved from cdelib.sourceforge.net 01/2007

  41. Moreau G, Broto P (1980) New J Chem 4:359

    CAS  Google Scholar 

  42. Bauknecht H, Zell A, Bayer H, Levi P, Wagener M, Sadowski J, Gasteiger J (1996) J Chem Inf Model 36:1205

    CAS  Google Scholar 

  43. Spycher S, Pellegrini E, Gasteiger J (2005) J Chem Inf Model 45:200

    Article  CAS  Google Scholar 

  44. Fechner U, Franke L, Renner S, Schneider P, Schneider G (2003) J Comput Aid Mol Des 17:687

    Article  CAS  Google Scholar 

  45. Spycher S, Nendza M, Gasteiger J (2004) QSAR Comb Sci 23:779

    Article  CAS  Google Scholar 

  46. Teckentrup A, Briem H, Gasteiger J (2004) J Chem Inf Model 44:626

    CAS  Google Scholar 

  47. Hutchings MG, Gasteiger J (1983) Tetrahedron Lett 24:2541

    Article  CAS  Google Scholar 

  48. Gasteiger J, Hutchings MG (1983) Tetrahedron Lett 24:2537

    Article  CAS  Google Scholar 

  49. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219

    Article  CAS  Google Scholar 

  50. Hollas B (2003) J Math Chem V33:91

    Article  Google Scholar 

  51. ADRIANA.Code, version.1.0, 2006, Molecular Networks GmbH, Erlangen, Germany. http://www.molecular-networks.com

  52. Hemmer MC, Steinhauer V, Gasteiger J (1999) Vib Spectrosc 19:151

    Article  CAS  Google Scholar 

  53. Sadowski J, Gasteiger J (1993) Chem Rev 93:2567

    Article  CAS  Google Scholar 

  54. CORINA, version 3.2. 2003, Molecular Networks GmbH, Erlangen, Germany. http://www.molecular-networks.co

  55. Johnson M, MeqiLite, version 2.30, 2007, Pannanugget Consulting L.L.C., Kalamazoo, MI, USA. http://www.pannanugget.com

  56. Johnson M (2006) An introduction to the MeqiSuite Indices. Pannanugget Consulting L.L.C. http://www.pannanugget.com/MeqiSuiteIntro.pdf

  57. Sammon JR (1969) IEEE T Comput C-18:401

    Article  Google Scholar 

  58. R Development Core Team, R: A language and environment for statistical computing, version 2.0, 2005. http://www.r-project.org/

  59. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York, USA

    Google Scholar 

  60. Brown RD, Martin YC (1997) J Chem Inf Model 37:1

    CAS  Google Scholar 

  61. Renner S, Schwab CH, Gasteiger J, Schneider G (2006) J Chem Inf Model 46:2324

    Article  CAS  Google Scholar 

  62. Ginn C, Willett P, Bradshaw J (2000) Persp Drug Discov Des 20:1

    Article  CAS  Google Scholar 

  63. Sheridan RP, Kearsley SK (2002) Drug Discov Today 7:903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Gasteiger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hristozov, D.P., Oprea, T.I. & Gasteiger, J. Virtual screening applications: a study of ligand-based methods and different structure representations in four different scenarios. J Comput Aided Mol Des 21, 617–640 (2007). https://doi.org/10.1007/s10822-007-9145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9145-8

Keywords

Navigation