Skip to main content
Log in

A knowledge-based approach to generating diverse but energetically representative ensembles of ligand conformers

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This paper describes a new and efficient stochastic conformational sampling method for generating a range of low-energy molecule conformations. Sampling can be tailored to a specific structural domain (e.g., peptides) by extracting torsional profiles from specific datasets and subsequently applying them to target molecules outside the reference set. The programs that handle creation of the knowledge-based torsional profiles and conformer generation per se are separate and so can be used independently or sequentially, depending on the task at hand. The conformational ensembles produced are contrasted with those generated using local minimization approaches. They are also quantitatively compared with a broader range of techniques in terms of speed and the ability to reproduce bound ligand conformations found in complexes with proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Smellie A, Teig SL, Towbin P (1995) J Comp Chem 16:171–187

    Article  CAS  Google Scholar 

  2. Cato SJ (2000) In: Güner O (ed) Pharmacophore perception, development, use in drug design. International University Line, La Jolla CA, pp 107–125

  3. Beusen DD, Shands EFB, Karasek SF, Marshall GR, Dammkoehler RA (1996) J Mol Struct: Theochem 370:157–171

    Article  CAS  Google Scholar 

  4. Sadowski J, Gasteiger J, Klebe G (1994) J Chem Inf Comput Sci 34:1000–1008

    Article  CAS  Google Scholar 

  5. Meng EC, Shoichet BK, Kuntz ID (1992) J Comp Chem 13:505–524

    Article  CAS  Google Scholar 

  6. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) J Mol Graph Model 21:289–307

    Article  CAS  Google Scholar 

  7. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  8. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  9. Jones G, Willett P, Glen RC (1995) J Comput-Aided Mol Des 9: 532–549

    Article  CAS  Google Scholar 

  10. Hurst T (1994) J Chem Inf Comput Sci 34:190–196

    CAS  Google Scholar 

  11. Jain AN (2003) J Med Chem 46:499–511

    Article  CAS  Google Scholar 

  12. Smellie A, Kahn SD, Teig SL (1995) J Chem Inf Comput Sci 35:285–294

    Article  CAS  Google Scholar 

  13. Martin YC, Bures MG, Danaher EA, DeLazzer J, Lico I, Pavlik PA (1993) J Comput-Aided Mol Des 7:83–102

    Article  CAS  Google Scholar 

  14. Smellie A, Kahn SD, Teig SL (1995) J Chem Inf Comput Sci 35:295–304

    Article  CAS  Google Scholar 

  15. CONFORT® was developed by R.S. Pearlman and R. Balducci at the University of Texas, Austin, and is distributed by Tripos International, 1699 S. Hanley Rd., St. Louis MO 63144 USA (http://www.tripos.com)

  16. SYBYL® and GALAHAD™ are distributed by Tripos International, 1699 S Hanley Rd, St. Louis MO 63144 USA ( http://www.tripos.com)

  17. OMEGA is a product of OpenEye Science Software, 3600 Cerrillos Road Suite 1107, Santa Fe NM 87508 USA ( http://www.eyesopen.com)

  18. Vieth M, Hirst JD, Brooks CL III (1998) J Comput-Aided Mol Des 6:563–572

    Article  Google Scholar 

  19. Perola E, Charifson PS (2004) J Med Chem 47:2499–2510

    Article  CAS  Google Scholar 

  20. Boström J, Norrby P-O, Liljefors T (1998) J Comput-Aided Mol Des 12:383–396

    Article  Google Scholar 

  21. Boström J (2001) J Comp-Aided Mol Des 15:1137–1152

    Article  Google Scholar 

  22. Strizhev A, Wolohan P, Choi S, Abrahamian E, Clark RD (2006) J Chem Inf Model 46:1862–1870

    Article  CAS  Google Scholar 

  23. KBProf and KBConf are trademarks of Tripos L.P

  24. Nissink JW, Murray C, Hartshorn M, Verdonk ML, Cole JC, Taylor R (2002) Proteins 49:457–471

    Article  CAS  Google Scholar 

  25. Ash S, Cline MA, Homer RW, Hurst T, Smith GB (1997) J Chem Inf Comput Sci 37:71–79

    Article  CAS  Google Scholar 

  26. Homer RW, Clark RD, Hurst T, Jilek RJ, Swanson: SYBYL Line Notation (SLN): a single notation to represent chemical structures, queries, reactions, virtual libraries (manuscript in preparation)

  27. For details, see http://www.tripos.com/mol2/atom_types.html

  28. LeadQuest® is a available from Tripos Discovery Research Centre, Bude-Stratton Business Park, Bude Cornwall EX23 BLY UK ( http://www.leadquest.com)

  29. Halgren TA (1996) J Comp Chem 17:490–641

    Article  CAS  Google Scholar 

  30. Halgren TA (1999) J Comp Chem 20:720–748

    Article  CAS  Google Scholar 

  31. Takahashi Y, Sukekawa M, Sasaki S-I (1992) J Chem Inf Comput Sci 32:639–643

    Article  CAS  Google Scholar 

  32. Gillet VJ, Willett P, Bradshaw J (2003) J Chem Inf Comput Sci 43:338–345

    Article  CAS  Google Scholar 

  33. Rarey M, Dixon JS (1998) J Comput-Aided Mol Des 12:471–490

    Article  CAS  Google Scholar 

  34. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acids Res 28:235–242 ( http://www.rcsb.org/pdb)

    Google Scholar 

  35. http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/index.html

  36. CONCORD® was developed by R.S. Pearlman, A. Rusinko, J.M. Skell and R. Baducci at the University of Texas, Austin, and is distributed exclusively by Tripos International, 1699 S. Hanley Rd., St. Louis MO 63144

  37. Boström J, Greenwood JR, Gottfries J (2001) J Mol Graph Model 21:449–462

    Article  Google Scholar 

  38. McMartin C, Bohacek R (1997) J Comput-Aided Mol Des 11:333–344

    Article  CAS  Google Scholar 

  39. Kirchmair J, Wolber G, Laggner C, Langer T (2006) J Chem Inf Model 46:1848–1861

    Article  CAS  Google Scholar 

  40. Sadowski J, Boström J (2006) J Chem Inf Model 46:2305–2309

    Article  CAS  Google Scholar 

  41. Klebe G, Mietzner T (1994) J Comput-Aided Mol Des 8:583–606

    Article  CAS  Google Scholar 

  42. Krystek SR Jr, Hunt JT, Stein PD, Stouch TR (1995) J Med Chem 38:659–668

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to Dr. Edmond Abrahamian (Tripos) for infusing common sense into this publication, noting errors, suggesting additional areas to cover, and asking searching questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Clark.

Appendices

Appendix A: Substructure standardization rules

figure a

Appendix B: Rotatable bond definitions used

figure b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorfman, R.J., Smith, K.M., Masek, B.B. et al. A knowledge-based approach to generating diverse but energetically representative ensembles of ligand conformers. J Comput Aided Mol Des 22, 681–691 (2008). https://doi.org/10.1007/s10822-007-9156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9156-5

Keywords

Navigation