Abstract
Principles of fragment-based molecular design are presented and discussed in the context of de novo drug design. The underlying idea is to dissect known drug molecules in fragments by straightforward pseudo-retro-synthesis. The resulting building blocks are then used for automated assembly of new molecules. A particular question has been whether this approach is actually able to perform scaffold-hopping. A prospective case study illustrates the usefulness of fragment-based de novo design for finding new scaffolds. We were able to identify a novel ligand disrupting the interaction between the Tat peptide and TAR RNA, which is part of the human immunodeficiency virus (HIV-1) mRNA. Using a single template structure (acetylpromazine) as reference molecule and a topological pharmacophore descriptor (CATS), new chemotypes were automatically generated by our de novo design software Flux. Flux features an evolutionary algorithm for fragment-based compound assembly and optimization. Pharmacophore superimposition and docking into the target RNA suggest perfect matching between the template molecule and the designed compound. Chemical synthesis was straightforward, and bioactivity of the designed molecule was confirmed in a FRET assay. This study demonstrates the practicability of de novo design to generating RNA ligands containing novel molecular scaffolds.






Similar content being viewed by others
References
Lowrie JF, Delisle RK, Hobbs DW, Diller DJ (2004) Comb Chem High Throughput Screen 7:495
Fontaine B, Plassart-Schiess E, Nicole S (1997) Mol Aspects Med 18:415
Oh SJ, Ha H-J, Chi DY, Lee HK (2001) Curr Med Chem 8:999
Schneider G, Fechner U (2005) Nat Rev Drug Discov 4:649
Walters WP, Stahl MT, Murcko MA (1998) Drug Disc Today 3:160
Lipinski C, Hopkins A (2004) Nature 432:855
Danziger DJ, Dean PM (1989) Proc R Soc Lond B 236:101
Lewis RA (1990) J Comput Aided Mol Des 4:205
Nishibata Y, Itai A (1991) Tetrahedron 47:8985
Bleicher KH, Böhm H-J, Müller K, Alanine AI (2003) Nat Rev Drug Disc 2:369
Keseru GM, Makara GM (2006) Drug Discov Today 11:741
Matsumoto C, Hamasaki K, Mihara A, Ueno A (2000) Bioorg Med Chem Lett 10:1857
Carabateas PM, Schodack NY (1971) Chem Abstr EN. US patent no. 3679690; 77:151966
Schneider P, Schneider G (2003) QSAR Comb Sci 22:713
Pearlman DA, Murcko MA (1993) J Comput Chem 14:1184
Clark DE, Frenkel D, Levy SA, Li J, Murray CW, Robson B, Waszkowycz B, Westhead DR (1995) J Comput Aided Mol Des 9:13
Gillett VJ, Myatt G, Zsoldos Z, Johnson AP (1995) Perspect Drug Discov Des 3:34
Todorov NP, Dean PM (1997) J Comput Aided Mol Des 11:175
Mauser H, Stahl M (2007) J Chem Inf Model 47:318
Leach AR, Bryce RA, Robinson AJ (2000) J Mol Graph Model 18:358
Leach AR, Lewis RA (1994) J Comput Chem 15:233
Leach AR, Kilvington SR (1994) J Comput Aided Mol Des 8:283
Böhm H-J (1992) J Comput Aided Mol Des 6:61
Böhm H-J (1992) J Comput Aided Mol Des 6:593
Rotstein SH, Murcko MA (1993) J Med Chem 36:1700
Murray CW, Clark DE, Auton TR, Firth MA, Li J, Sykes RA, Waszkowycz B, Westhead DR, Young SC (1997) J Comp Aided Mol Des 11:193
Eksterowicz JE, Evensen E, Lemmen C, Brady GP, Lanctot JK, Bradley EK, Saiah E, Robinson LA, Grootenhuis PD, Blaney JM (2002) J Mol Graph Model 20:469
Lewis RA (1990) J Comput Aided Mol Des 4:205
Lewis RA, Roe DC, Huang C, Ferrin TE, Langridge R, Kuntz ID (1992) J Mol Graph 10:66
Roe DC, Kuntz ID (1995) J Comput Aided Mol Des 9:269
Gehlhaar DK, Moerder KE, Zichi D, Sherman CJ, Ogden RC, Freer ST (1995) J Med Chem 38:466
Miranker A, Karplus M (1995) Proteins 23:472
Jorgensen WL, Ruiz-Caro J, Tirado-Rives J, Basavapathruni A, Anderson KS, Hamilton AD (2006) Bioorg Med Chem Lett 16:663
Fechner U, Schneider G (2006) J Chem Inf Model 46:699
Fechner U, Schneider G (2007) J Chem Inf Model 47:656
Lewell XO, Budd DB, Watson SP, Hann MM (1998) J Chem Inf Comput Sci 38:511
Schneider G, Lee M-L, Stahl M, Schneider P (2000) J Comput Aided Mol Des 14:487
Rechenberg I (1994) Evolutionsstrategie ’94. Frommann-Holzboog, Stuttgart
Schneider G, Schuchhardt J, Wrede P (1994) Comput Appl Biosci 10:635
Schneider G, Schuchhardt J, Wrede P (1996) Biol Cybern 74:203
Gohlke H, Hendlich M, Klebe G (2000) J Mol Biol 295:337
Schneider G, Böhm H-J (2002) Drug Discov Today 7:64
Joseph-McCarthy D, Baber JC, Feyfant E, Thompson DC, Humblet C (2007) Curr Opin Drug Discov Devel 10:264
Waszkowycz B, Clark DE, Frenkel D, Li J, Murray CW, Robson B, Westhead DR (1994) J Med Chem 37:3994
Nachbar RB (2000) Genet Programming Evolvable Machines 1:57
Pellegrini E, Field MJ (2003) J Comp Aided Mol Des 17:621
Douguet D, Thoreau E, Grassy G (2000) J Comput Aided Mol Des 14:449
Globus A, Lawton J, Wipke WT (1999) Nanotechnology 10:290
Schneider G, Chomienne-Clement O, Hilfiger L, Kirsch S, Böhm H-J, Schneider P, Neidhart W (2000) Angew Chemie Int Ed 39:4130
Brown N, McKay B, Gilardoni F, Gasteiger J (2004) J Chem Inf Comput Sci 44:1079
Gillet VJ, Khatib W, Willett P, Fleming PJ, Green DVS (2002) J Chem Inf Comput Sci 42:375
Schneider G, Neidhart W, Giller T, Schmid G (1999) Angew Chemie Int Ed 38:2894
Böhm H-J (1993) J Mol Recog 6:131
Barnum D, Greene J, Smellie A, Sprague P (1996) J Chem Inf Comput Sci 36:563
Bush BL, Sheridan RP (1993) J Chem Inf Comput Sci 33:756
Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms (2nd edn). MIT Press, Cambridge, pp 531–539
Fechner U, Schneider G (2004) QSAR Comb Sci 23:19
Fechner U, Schneider G (2004) ChemBioChem 5:538
Rogers-Evans M, Alanine AI, Bleicher KH, Kube D, Schneider G (2004) QSAR Comb Sci 23:426
Schneider G, Schneider P, Renner S (2006) QSAR Comb Sci 25:1162
Bannwarth S, Gatignol A (2005) Curr HIV Res 3:61
Karn J (1999) J Mol Biol 293:235
Du Z, Lind KE, James TL (2002) Chem Biol 9:707
Mu Y, Stock G (2006) Biophys J 90:391
Lind K, Du Z, Fujinaga K, Peterlin B, James T (2002) Chem Biol 9:185
Tanrikulu Y, Nietert M, Proschak E, Grabowski K, Schneider P, Scheffer U, Göbel M, Schneider G (2007) Chembiochem 8:1932
Jones G, Willet P, Glen R, Leach A, Taylor R (1997) J Mol Biol 267:727
Renner S, Ludwig V, Boden O, Scheffer U, Göbel M, Schneider G (2005) Chembiochem 6:1119
Asachi M, Sasakura K, Sugasawa T (1985) Chem Pharm Bull 33:1826
Mayer M, James TL (2004) J Am Chem Soc 126:4453
(a) SciFinder Scholar 2006, Chemical Abstracts Service, Columbus, Ohio, USA, excessed Oct. 2007 (b) Somerville AN (1998) J Chem Inf Comput Sci 38:1024
Noeske T, Sasse BC, Stark H, Parsons CG, Weil T, Schneider G (2006) ChemMedChem 1:1066
Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004
Acknowledgements
The authors would like to thank Steffi Becker for technical assistance. M.S. is grateful for a predoctoral fellowship from the Dr. Hilmer Foundation. This work was supported by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, and the Deutsche Forschungsgemeinschaft (SFB 579 “RNA-Ligand Interactions”, projects A3 and A11).
Author information
Authors and Affiliations
Corresponding author
Additional information
Andreas Schüller and Marcel Suhartono contributed equally to this work.
Rights and permissions
About this article
Cite this article
Schüller, A., Suhartono, M., Fechner, U. et al. The concept of template-based de novo design from drug-derived molecular fragments and its application to TAR RNA. J Comput Aided Mol Des 22, 59–68 (2008). https://doi.org/10.1007/s10822-007-9157-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-007-9157-4