Skip to main content

Advertisement

Log in

Molecular docking studies on tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepinone (TIBO) derivatives as HIV-1 NNRT inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

At present, chemotherapy seems to be the main weapon in the arsenal of remedies for the ongoing crusade against AIDS. The mode of binding of the TIBO family of inhibitors has been of interest because these compounds do not fit the two-hinged-ring model as generally observed in the NNRTIs. Flexible docking simulations were performed with a series of 53 TIBO derivatives as NNRTIs. Binding preferences as well as the structural and energetic factors associated with them were studied. A good correlation (r 2 = 0.849, q 2 = 0.843) was observed between the biological activity and binding affinity of the compounds which suggest that the identified binding conformations of these inhibitors are reliable. Further screening of PubChem database yielded novel scaffolds. Our studies suggest that modifications to the TIBO group of inhibitors might enhance their binding efficacy and hence, potentially, their therapeutic utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Silvestri R, Maga G (2006) Expert Opin Ther Pat 16:939

    Article  CAS  Google Scholar 

  2. Matthis G, Torsten U, Danielson U (2006) J Med Chem 49:2375

    Article  Google Scholar 

  3. Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Ashman DJ, Holmberg SD (1998) N Engl J Med 338:853

    Article  Google Scholar 

  4. Palella FJ, Chmiel JS, Moorman AC, Holmberg SD (2002) AIDS 16:1617

    Article  CAS  Google Scholar 

  5. De Clercq E (1998) Antiviral Res 38:153

    Article  Google Scholar 

  6. De Clercq E (2004) Chem Biodivers 1:44

    Article  Google Scholar 

  7. De Clercq E (2005) J Med Chem 10:1297

    Article  Google Scholar 

  8. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Science 256:1783

    Article  CAS  Google Scholar 

  9. Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D, Stammers D (1995) Nat Struct Biol 2:293

    Article  CAS  Google Scholar 

  10. Ding J, Das K, Tantillo C, Zhang W, Clark ADJ, Pauwels R, Moereels H, Koymans L, Janssen PAJ, Smith RHJ, Kroeger Koepke R, Michejda CJ, Hughes SH, Arnold E (1995) Structure 3:365

    Article  CAS  Google Scholar 

  11. Deeks SG (2001) J AIDS 26:S25

    CAS  Google Scholar 

  12. Tavel JA, Miller KD, Masur H (1999) Clin Infect Dis 28:643

    Article  CAS  Google Scholar 

  13. Das K, Levi PJ, Hughes SH, Arnold E (2005) Prog Biophys Mol Biol 88:209

    Article  CAS  Google Scholar 

  14. Zhou Z, Lin X, Madura JD (2006) Infect Disord Drug Targets 6:391

    CAS  Google Scholar 

  15. De Clercq E (2001) Curr Med Chem 8:1543

    Google Scholar 

  16. Campiani G, Ramunno A, Maga G, Nacci V, Fattorusso C, Catalanotti B, Morelli E, Novellino E (2002) Curr Pharm Des 8:615

    Article  CAS  Google Scholar 

  17. Hannongbua S, Lawtrakul L, Limtrakul J (1996) J Comput Aided Mol Des 10:145

    Article  CAS  Google Scholar 

  18. Hannongbua S, Pungpo P, Limtrakul J, Wolschann P (1999) J Comput Aided Mol Des 13:563

    Article  CAS  Google Scholar 

  19. Garg R, Gupta SP, Gao H, Babu MS, Debnath AK, Hansch C (1991) Chem Rev 99:3525

    Article  Google Scholar 

  20. Zhou Z, Madura JD (2004) J Chem Inf Comput Sci 44:2167

    Article  CAS  Google Scholar 

  21. Barreca ML, Rao A, De Luca L, Zappala M, Monforte AM, Maga G, Pannecouque C, Balzarini J, De Clercq E, Chimirri A, Monforte P (2005) J Med Chem 48:3433

    Article  CAS  Google Scholar 

  22. D’Cruz OJ, Uckun FM (2006) J Antimicrob Chemother 57:411

    Article  CAS  Google Scholar 

  23. Pauwels R, Andries K, Desmyter J, Schols D, Kukla MJ, Breslin HJ, Raeymaeckers A, Van Gelder J, Woestenborghs R, Heykants J (1990) Nature 343:470

    Article  CAS  Google Scholar 

  24. Ren J, Esnouf R, Hopkins A, Ross C, Jones Y, Stammers D, Stuart D (1995) Structure 3:915

    Article  CAS  Google Scholar 

  25. Zhou Z, Madura JD (2004) J Chem Inf Comput Sci 44:2167

    Article  CAS  Google Scholar 

  26. De Clercq E (1995) Clin Microbiol Rev 8:200

    Google Scholar 

  27. Das K, Ding J, Hsiou Y, Clark AJ, Moereels H, Koymans L, Andries K, Pauwels R, Janssen P, Boyer P, Clark P, Smith RJ, Kroeger SM, Michejda C, Hughes S, Arnold E (1996) J Mol Biol 264:1085

    Article  CAS  Google Scholar 

  28. Ding J, Das K, Moereels H, Koymans L, Andries K, Janssen PA, Hughes SH, Arnold E (1995) Nat Struct Biol 2:407

    Article  CAS  Google Scholar 

  29. Bahram H, Mohammad Hossein Tabaei S, Fatemeh N (2005) J Mol Struct Theochem 732:39

    Article  Google Scholar 

  30. Saen-oon S, Kuno M, Hannongbua S (2005) Proteins 61:859

    Article  CAS  Google Scholar 

  31. Zhou Z, Madura JD (2004) Proteins 57:493

    Article  CAS  Google Scholar 

  32. Rawal RK, Kumar A, Siddiqi IS, Katti SB (2007) J Mol Model 13:155

    Article  CAS  Google Scholar 

  33. Rizzo RC, Wang DP, Tirado-Rives J, Jorgensen WL (2000) J Am Chem Soc 122:12898

    Article  CAS  Google Scholar 

  34. http://www.pubchem.ncbi.nlm.nih.gov

  35. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235

    Article  CAS  Google Scholar 

  36. Thomsen R, Christensen MH (2006) J Med Chem 49:3315

    Article  CAS  Google Scholar 

  37. Storn R, Price K (1995) Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report, International Computer Science Institute, Berkley, CA

  38. Thomsen R (2003) Flexible ligand docking using differential evolution. In: Proceedings of the 2003 congress on evolutionary computation, vol 4, pp 2354–2361

  39. Gehlhaar DK, Verkhivker G, Rejto PA, Fogel DB, Fogel LJ, Freer ST (1995) Docking conformationally flexible small molecules into a protein binding site through evolutionary programming. In: Proceedings of the fourth international conference on evolutionary programming, pp 615–627

  40. Gehlhaar DK, Bouzida D, Rejto PA (1998) Fully automated and rapid flexible docking of inhibitors covalently bound to serine proteases. In: Proceedings of the seventh international conference on evolutionary programming, pp 449–461

  41. Yang JM, Chen CC (2004) Proteins 55:288

    Article  CAS  Google Scholar 

  42. http://www.molegro.com (free trial version)

  43. Mager PP (1997) Med Res Rev 17:235

    Article  CAS  Google Scholar 

  44. Tantillo C, Ding J, Jacobo-Molina A, Nanni RG, Boyer PL, Hughes SH, Pauwels R, Andries K, Janssen PA, Arnold E (1994) J Mol Biol 243:369

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author wishes to acknowledge Dr. R. C. Saraswat, Director, S.G.S. I.T.S, Indore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin S. Sapre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapre, N.S., Gupta, S., Pancholi, N. et al. Molecular docking studies on tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepinone (TIBO) derivatives as HIV-1 NNRT inhibitors. J Comput Aided Mol Des 22, 69–80 (2008). https://doi.org/10.1007/s10822-007-9161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9161-8

Keywords

Navigation