Skip to main content
Log in

Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection?

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Over the last few years many articles have been published in an attempt to provide performance benchmarks for virtual screening tools. While this research has imparted useful insights, the myriad variables controlling said studies place significant limits on results interpretability. Here we investigate the effects of these variables, including analysis of calculation setup variation, the effect of target choice, active/decoy set selection (with particular emphasis on the effect of analogue bias) and enrichment data interpretation. In addition the optimization of the publicly available DUD benchmark sets through analogue bias removal is discussed, as is their augmentation through the addition of large diverse data sets collated using WOMBAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gruneberg S, Wendt B, Klebe G (2001) Angew Chem Int Ed Engl 40:389

    Article  CAS  Google Scholar 

  2. Wu JH, Batist G (2001) Anticancer Drug Design 16:129

    CAS  Google Scholar 

  3. Paiva AM, Vanderwall DE, Blanchard JS, Kozarich JW, Williamson JM, Kelly TM (2001) Biochim Biophys Acta 1545:67

    CAS  Google Scholar 

  4. Perola E, Xu K, Kollmeyer TM, Kaufmann SH, Prendergast FG, Pang Y-P (2000) J Med Chem 43:401

    Article  CAS  Google Scholar 

  5. Evers A, Klebe G (2004) J Med Chem 47:5381

    Article  CAS  Google Scholar 

  6. Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, Connolly DT, Shoichet BK (2002) J Med Chem 45:2213

    Article  CAS  Google Scholar 

  7. Brenk R, Naerum L, Gradler U, Gerber H-D, Garcia GA, Reuter K, Stubbs MT, Klebe G (2003) J Med Chem 46:1133

    Article  CAS  Google Scholar 

  8. Kitchen DB, Deconrez H, Furr JR, Bajorath J (2004) Nat Rev Drug Discov 3:935

    Article  CAS  Google Scholar 

  9. Alvarez JC (2004) Curr Opin Chem Biol 8:365

    Article  CAS  Google Scholar 

  10. Shoichet BK (2004) Nature 432:862

    Article  CAS  Google Scholar 

  11. Barril X, Hubbard RE, Morley SD (2004) Mini Rev Med Chem 4:779

    CAS  Google Scholar 

  12. Jansen JM, Martin EJ (2004) Curr Opin Chem Biol 8:359

    Article  CAS  Google Scholar 

  13. Krovat EM, Steindl T, Langer T (2005) Curr Comput Aided Drug Des 1:93

    Article  CAS  Google Scholar 

  14. Mohan V, Gibbs AC, Cummings MD, Jaeger EP, DesJarlais RL (2005) Curr Pharm Des 11:323

    Article  CAS  Google Scholar 

  15. Rajamani R, Good AC (2007) Curr Opin Drug Discov Devel 10:308

    CAS  Google Scholar 

  16. Charifsen PS, Corkery JJ, Murcko MA, Patrick Walters W (1999) J Med Chem 42:5100

    Article  Google Scholar 

  17. Bissantz C, Folkers G, Rognan D (2000) J Med Chem 43:4759

    Article  CAS  Google Scholar 

  18. Miteva MA, Lee WH, Montes MO, Villoutriex BO (2005) J Med Chem 48:6012

    Article  CAS  Google Scholar 

  19. Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP (2005) J Med Chem 48:962

    Article  CAS  Google Scholar 

  20. Evers A, Hessler G, Matter H, Klabunde T (2005) J Med Chem 48:5448

    Article  CAS  Google Scholar 

  21. Chen H, Lyne PD, Giordanetto F, Lovell T, Li J (2006) J Chem Inf Model 46:401

    Article  CAS  Google Scholar 

  22. Warren GL, Andrews CW, Cappelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49:5912

    Article  CAS  Google Scholar 

  23. McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley S, Maiorov V, Truchon J-F, Cornell WD (2007) J Chem Inf and Model 47:1504

    Article  CAS  Google Scholar 

  24. Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49:6789

    Article  CAS  Google Scholar 

  25. http://www.dud.docking.org/ 10/07

  26. Olah M, Mracec M, Ostopovici L, Rad R, Bora A, Hadaruga N, Olah I, Banda M, Simon Z, Mracec M, Oprea TI (2004) In: Oprea TI (ed) WOMBAT: world of molecular bioactivity, in chemoinformatics in drug discovery. Wiley-VCH, New York, pp 223–239

  27. http://www.sunsetmolecular.com/products/?id=4 10/07

  28. http://www.dud.docking.org/wombat/accessed 10/07

  29. LIGPREP, developed and distributed by Schrodinger Inc.: http://www.schrodinger.com/ProductDescription.php?mID=6&sID=7&cID=0 10/07

  30. Sadowski J, Gasteiger J (1993) J Chem Rev 7:2567

    Article  Google Scholar 

  31. Pearlman RS (1987) Chem Des Autom News 2:5

    Google Scholar 

  32. ROCS, OMEGA and the OECHEM toolkit are all developed and distributed by Openeye Scientific Software Inc: http://www.eyesopen.com/products 10/07

  33. Pipeline Pilot, developed by Scitegic: http://www.scitegic.com/ 10/07

  34. Hawkins PCD, Skillman AG, Nicholls A (2007) J Med Chem 50:74

    Article  CAS  Google Scholar 

  35. Pham TA, Jain AN (2006) J Med Chem 49:5856

    Article  CAS  Google Scholar 

  36. http://www.biopharmics.com/downloads.html accessed 11/07

  37. Steindl T, Langer T (2004) J Chem Inf Comput Sci 44:1849

    Article  CAS  Google Scholar 

  38. Oprea TI, Davis AM, Teague SJ, Leeson PD (2001) J Chem Inf Comput Sci 41:1308

    Article  CAS  Google Scholar 

  39. Ghose AK, Pritchett A, Crippen GM (1988) J Comput Chem 9:80

    Article  CAS  Google Scholar 

  40. Barnard JM (1993) J Chem Inf Comput Sci 33:532

    Article  CAS  Google Scholar 

  41. Gillet VJ, Willett P, Bradshaw J (2003) J Chem Inf Comput Sci 43:346

    Article  Google Scholar 

  42. Jain AN (2007) 234th ACS National Meeting, Boston, USA, Aug 19–23, COMP-147

  43. Smith R, Hubbard RE, Gschwend DA, Leach AR, Good AC (2003) J Mol Graph Model 22:41

    Article  CAS  Google Scholar 

  44. Good AC, Hermsmeier MA, Hindle SA (2004) J Comput Aided Mol Des 18:529

    Article  CAS  Google Scholar 

  45. Oprea TI (2002) J Braz Chem Soc 13:811

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by support the New Mexico Tobacco Settlement fund (TIO). Thanks go to Andrei Leitão of UNM Biocomputing for his help in differentiating WOMBAT HIV NNRTI/NRTI compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Good.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Good, A.C., Oprea, T.I. Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection?. J Comput Aided Mol Des 22, 169–178 (2008). https://doi.org/10.1007/s10822-007-9167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9167-2

Keywords

Navigation