Abstract
Trichomonas vaginalis (Tv) is the causative agent of the most common, non-viral, sexually transmitted disease in women and men worldwide. Since 1959, metronidazole (MTZ) has been the drug of choice in the systemic treatment of trichomoniasis. However, resistance to MTZ in some patients and the great cost associated with the development of new trichomonacidals make necessary the development of computational methods that shorten the drug discovery pipeline. Toward this end, bond-based linear indices, new TOMOCOMD-CARDD molecular descriptors, and linear discriminant analysis were used to discover novel trichomonacidal chemicals. The obtained models, using non-stochastic and stochastic indices, are able to classify correctly 89.01% (87.50%) and 82.42% (84.38%) of the chemicals in the training (test) sets, respectively. These results validate the models for their use in the ligand-based virtual screening. In addition, they show large Matthews’ correlation coefficients (C) of 0.78 (0.71) and 0.65 (0.65) for the training (test) sets, correspondingly. The result of predictions on the 10% full-out cross-validation test also evidences the robustness of the obtained models. Later, both models are applied to the virtual screening of 12 compounds already proved against Tv. As a result, they correctly classify 10 out of 12 (83.33%) and 9 out of 12 (75.00%) of the chemicals, respectively; which is the most important criterion for validating the models. Besides, these classification functions are applied to a library of seven chemicals in order to find novel antitrichomonal agents. These compounds are synthesized and tested for in vitro activity against Tv. As a result, experimental observations approached to theoretical predictions, since it was obtained a correct classification of 85.71% (6 out of 7) of the chemicals. Moreover, out of the seven compounds that are screened, synthesized and biologically assayed, six compounds (VA7-34, VA7-35, VA7-37, VA7-38, VA7-68, VA7-70) show pronounced cytocidal activity at the concentration of 100 μg/ml at 24 h (48 h) within the range of 98.66%–100% (99.40%–100%), while only two molecules (chemicals VA7-37 and VA7-38) show high cytocidal activity at the concentration of 10 μg/ml at 24 h (48 h): 98.38% (94.23%) and 97.59% (98.10%), correspondingly. The LDA-assisted QSAR models presented here could significantly reduce the number of synthesized and tested compounds and could increase the chance of finding new chemical entities with anti-trichomonal activity.


Similar content being viewed by others

References
Krieger JN (2000) Sex Transm Dis 27:241
Petrin D, Delgaty K, Bhatt R, Garber G (1998) Clin Microbiol Rev 11:300
World-Health-Organization (1995) An overview of selected curable sexually transmitted diseases. World Health Organization, Geneva Switzerland, p 2
Cosar C, Julou L (1959) Ann Inst Pasteur 96:238
Centers for Disease Control and Prevention (1993) Morb Mortal Wkly Rep 42(RR-14) 70
Knight R (1980) J Antimicrob Chemother 6:577
Gillette H, Schmid GP, Moswe D (1985) Metronidazole-resistant Trichomonas vaginalis, a case series, Denver, 1999
Lumsden WHR, Robertson DHH, Heyworth R, Harrison C (1988) Genitourin Med 64:217
Narcisi EM, Secor WE (1996) Antimicrob Agents Chemother 40:1121
Narcisi EM, Secor WE (1996) Antimicrob Agents Chemother 40:1121
Houang ET, Ahmet Z, Lawrence AG (1997) Sex Transm Dis 24:116
Pattman RS, Sprott MS, Kerns AM, Earnshaw M (1989) Genitourin Med 65:274
Wong CA, Wilson PD, Chew TA (1990) Aust N Z J Obstet Gynaecol 30:169
Livengood CHI, Lossick JG (1991) Obstet Gynecol 78:954
Watson PG, Pattman RS (1996) Int J STD AIDS 7:296
Nyirjesy P, Sobel JD, Weitz MV (1998) Clin Infect Dis 26:986
Nyirjesy P, Weitz MV, Gelone SP, Fekete T (1995) Lancet 346:1110
Estrada E, Peña A (2000) Bioorg Med Chem 8:2755
Estrada E, Uriarte E, Montero A, Teijeira M, Santana L, De Clercq E (2000) J Med Chem 43:1975
Marrero-Ponce Y, Romero V, TOMOCOMD software, Central University of Las Villas TOMOCOMD (TOpological MOlecular COMputer Design) for Windows, version 1.0 is a preliminary experimental version; in future a professional version can be obtained upon request to Y. Marrero: yovanimp@uclv.edu.cu or ymarrero77@yahoo.es.
Marrero-Ponce Y (2003) Molecules 8:687
Marrero-Ponce Y (2004) J Chem Inf Comput Sci 44:2010
Marrero-Ponce Y (2004) Bioorg Med Chem 12:6351
Marrero-Ponce Y, Castillo-Garit JA, Torrens F, Romero-Zaldivar V, Castro E (2004) Molecules 9:1100
Marrero-Ponce Y, Díaz HG, Romero V, Torrens F, Castro EA (2004) Bioorg Med Chem 12:5331
Marrero-Ponce Y, Cabrera MA, Romero V, Ofori E, Montero LA (2003) Int J Mol Sci 4:512
Marrero-Ponce Y, Cabrera MA, Romero V, González DH, Torrens F (2004) J Pharm Pharmaceut Sci 7:186
Marrero-Ponce Y, Cabrera MA, Romero-Zaldivar V, Bermejo M, Siverio D, Torrens F (2005) Internet Electrón J Mol Des 4:124
Marrero-Ponce Y, Castillo-Garit JA, Olazabal E, Serrano HS, Morales A, Castanedo N, Ibarra-Velarde F, Huesca-Guillen A, Sanchez AM, Torrens F, Castro EA (2005) Bioorg Med Chem 13:1005
Marrero-Ponce Y, Castillo-Garit JA, Olazabal E, Serrano HS, Morales A, Castanedo N, Ibarra-Velarde F, Huesca-Guillen A, Jorge E, del Valle A, Torrens F, Castro EA (2004) J Comput Aided Mol Des 18:615
Marrero-Ponce Y, Huesca-Guillen A, Ibarra-Velarde F (2005) J Mol Struct (Theochem) 717:67
Marrero-Ponce Y, Montero-Torres A, Zaldivar CR, Veitia MI, Perez MM, Sanchez RN (2005) Bioorg Med Chem 13:1293
Marrero-Ponce Y, Medina-Marrero R, Torrens F, Martinez Y, Romero-Zaldivar V, Castro EA (2005) Bioorg Med Chem 13:2881
Marrero-Ponce Y, Medina-Marrero R, Martinez Y, Torrens F, Romero-Zaldivar V, Castro EA (2006) J Mol Mod 12:255
Marrero-Ponce Y, Nodarse D, González HD, Ramos de Armas R, Romero-Zaldivar V, Torrens F, Castro E (2004) Int J Mol Sci 5:276
Marrero-Ponce Y, Castillo-Garit JA, Nodarse D (2005) Bioorg Med Chem 13:3397
Marrero-Ponce Y, Medina R, Castro EA, de Armas R, González H, Romero V, Torrens F (2004) Molecules 9:1124
Marrero-Ponce Y, Medina-Marrero R, Castillo-Garit JA, Romero-Zaldivar V, Torrens F, Castro EA (2005) Bioorg Med Chem 13:3003
Marrero-Ponce Y, Torrens F (2006) J Comp-Aided Mol Des 20:685
Casañola-Martin GM, Khan MTH, Marrero-Ponce Y, Ather A, Sultan S, Torrens F, Rotondo R (2007) Bioorg Med Chem 15:1483
Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Germany
Estrada E (1996) J Chem Inf Comput Sci 36:844
Estrada E, Molina E (2001) J Mol Graph Model 20:54
Estrada E (1995) J Chem Inf Comput Sci 35:31
Estrada E, Guevara N, Gutman I (1998) J Chem Inf Comput Sci 38:428
Estrada E (1999) J Chem Inf Comput Sci 39:1042
Edwards CH, Penney DE (1988) Elementary linear algebra. Prentice-Hall, Englewood Cliffs, New Jersey, USA
Marrero Ponce Y (2004) J Chem Inf Comput Sci 44:2010
Estrada E, Vilar S, Uriarte E, Gutierrez Y (2002) J Chem Inf Comput Sci 42:1194
Estrada E, Peña A, Garcia-Domenech R (1998) J Comput Aided Mol Des 12:583
Potapov VM (1978) Stereochemistry. Mir, Moscow
Wang R, Gao Y, Lai L (2000) Perspect Drug Dis Des 19:47
Ertl P, Rohde B, Selzer P (2000) J Med Chem 43:3714
Ghose AK, Crippen GM (1987) J Chem Inf Comput Sci 27:21
Miller KJ (1990) J Am Chem Soc 112:8533
Gasteiger J, Marsili M (1978) Tetrahedron Lett 19:3181
Pauling L (1939) The nature of chemical bond. Cornell University Press, Ithaca (New York)
Browder A (1996) Mathematical analysis. An introduction. Springer-Verlag, New York
Axler S (1996) Linear algebra done right. Springer-Verlag, New York
Daudel R, Lefebre R, Moser C (1984) Quantum chemistry: methods and applications. Wiley, New York
Klein DJ (2003) Internet Electron J Mol Des 2:814
Todeschini R, Gramatica P (1998) Perspect Drug Dis Des 9–11:355
Consonni V, Todeschini R, Pavan M (2002) J Chem Inf Comput Sci 42:682
Kier LB, Hall LH (1986) Molecular connectivity in structure–activity analysis. Research Studies Press, Letchworth, UK
Negwer M (1987) Organic-chemical drugs and their synonyms. Akademie-Verlag, Berlin
Budavari S, O’Neil M, Ann Smith, Heckelman P, Obenchain J (1999) The Merck Index on CD-ROM. Chapman & Hall and Merck & Co., Inc
van de Waterbeemd H (1995) In: van Waterbeemd H (ed) Chemometric methods in molecular design. VCH Publishers, Weinheim, p 265
STATISTICA (data analysis software system) vs 6.0.
Estrada E, Patlewicz G (2004) Croat Chim Acta 77:203
Topliss JG, Edwards RP (1979) J Med Chem 22:1238
Wold S, Erikson L (1995) In: van de Waterbeemd H (ed) VCH Publishers, New York, p 309
Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Bioinformatics 16:412
Kouznetsov VV, Rivero CJ, Ochoa PC, Stashenko E, Martínez JR, Montero PD, Nogal RJJ, Fernández PC, Muelas SS, Gómez BA, Bahsas A, Amaro L (2005) J Arch Pharm 1:338
Kouznetsov VV, Vargas MLY, Tibaduiza B, Ochoa C, Montero PD, Nogal RJJ, Fernández C, Muelas S, Gómez A, Bahsas A, Amaro-Luis J (2004) J Arch Pharm 337:127
Gálvez J, Garcia-Domenech R, de Julián-Ortiz JV, Soler R (1995) J Chem Inf Comput Sci 35:272
Cercos-del-Pozo RA, Pérez-Giménez F, Salabert-Salvador MT, Garcia-March FJ (2000) J Chem Inf Comput Sci 40:178
Gálvez J, García R, Salabert MT, Soler R (1994) J Chem Inf Comput Sci 34:520
Johnson RA, Wichern DW (1988) Applied multivariate statistical analysis. Prentice-Hall, New Jersey
Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269
Rose K, Hall LH, Kier LB (2002) J Chem Inf Comput Sci 42:651
Mc Farland JW, Gans DJ (1995) In: Waterbeemd H (ed) Chemometric methods in molecular design. VCH Publishers, New York, p 295
Estrada E, Uriarte E (2001) Curr Med Chem 8:1573
Gavini E, Juliano C, Mulé A, Pirisino G, Murineddu G, Pinna A (2000) Arch Pharm (Weinheim) 333:341
Ochoa A, Pérez E, Pérez R, Suárez M, Ochoa E, Rodríguez H, Gómez A, Muelas S, Nogal RJJ, Martínez RA (1999) Arzneim Forsch 49:764
Kouznetsov V, Rodríguez W, Stashenko E, Ochoa C, Vega C, Rolón M, Montero PD, Escario JA, Gómez BA (2004) J Heterocyclic Chem 41:1
Watson C (2003) Biosilico 1:83
Lajiness MS (1990) In: Rouvray DH (ed) Computational chemical graph theory. Nova Science, New York, p 299
Walters WP, Stahl MT, Murcko MA (1998) Drug Discov Today 3:160
Castro S, Chicharro R, Arán VJ (2002) J Chem Soc, Perkin Trans 1:790
Acknowledgements
The authors wish to express their gratitude to Prof. Dr. Jorge Gálvez for his attention to this work and valuable suggestions. Yovani Marrero-Ponce (M.-P. Y) acknowledges the Valencia University for kind hospitality during the second semester of 2007. M.-P. Y thanks are given to the international relationships of Valencia University, (Spain) for partial financial support as well as the program ‘Estades Temporals per an Investigadors Convidats’ for a fellowship to work at Valencia University. Some authors’ thanks support from Spanish MEC (Project Reference: SAF2006-04698). Finally, F.T. thanks support from Spanish MEC DGI (Project No. CTQ2004-07768-C02-01/BQU) and Generalitat Valenciana (DGEUI INF01-051 and INFRA03-047, and OCYT GRUPOS03-173). Last but not least, Yovani Marrero-Ponce would like to express thanks for the partial support received from the project entitled Strengthening postgraduate education and research in Pharmaceutical Sciences. This project is funded by the Flemish Interuniversity Council (VLIR) of Belgium.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Marrero-Ponce, Y., Meneses-Marcel, A., Rivera-Borroto, O.M. et al. Bond-based linear indices in QSAR: computational discovery of novel anti-trichomonal compounds. J Comput Aided Mol Des 22, 523–540 (2008). https://doi.org/10.1007/s10822-008-9171-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-008-9171-1