Skip to main content
Log in

Molecular dynamics simulations of ligand-induced backbone conformational changes in the binding site of the periplasmic lysine-, arginine-, ornithine-binding protein

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The periplasmic lysine-, arginine-, ornithine-binding protein (LAOBP) traps its ligands by a large hinge bending movement between two globular domains. The overall geometry of the binding site remains largely unchanged between the open (unliganded) and closed (liganded) forms, with only a small number of residues exhibiting limited movement of their side chains. However, in the case of the ornithine-bound structure, the backbone peptide bond between Asp11 and Thr12 undergoes a large rotation. Molecular dynamics simulations have been used to investigate the origin and mechanism of this backbone movement. Simulations allowing flexibility of a limited region and of the whole binding site, with and without bound ligands, suggest that this conformational change is induced by the binding of ornithine, leading to the stabilisation of an energetically favourable alternative conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carlson HA, McCammon JA (2000) Accommodating protein flexibility in computational drug design. Mol Pharm 57:213–218

    CAS  Google Scholar 

  2. Carlson HA (2002) Protein flexibility is an important component of structure-based drug discovery. Curr Pharm Dis 8:1571–1578

    Article  CAS  Google Scholar 

  3. Carlson HA (2002) Protein flexibility an drug design: how to hit a moving target. Curr Opin Chem Biol 6:447–452

    Article  CAS  Google Scholar 

  4. Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541

    Article  CAS  Google Scholar 

  5. Teodoro ML, Kavraki LE (2003) Conformational flexibility models for the receptor in structure based drug design. Curr Pharm Des 9:1635–1648

    Article  CAS  Google Scholar 

  6. Wong CF, McCammon JA (2003) Protein flexibility and computer-aided drug design. Annu Rev Pharmacol Toxicol 43:31–35

    Article  CAS  Google Scholar 

  7. Leach AR (1994) Ligand docking to proteins with discrete side chain flexibility. J Mol Biol 235:345–356

    Article  CAS  Google Scholar 

  8. Totrov M, Abagyan R (1997) Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins Suppl 1:215–220

    Article  Google Scholar 

  9. Nakajima N, Higo J, Kidera A, Nakamura H (1997) Flexible docking of a ligand peptide to a receptor protein by multicanonical molecular dynamics simulation. Chem Phys Lett 278:297–301

    Article  CAS  Google Scholar 

  10. Schnecke V, Kuhn LA (2000) Virtual screening with solvation and ligand-induced complementarity. Perspect Drug Discov 20:171–190

    Article  CAS  Google Scholar 

  11. Cavasotto CN, Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 337:209–225

    Article  CAS  Google Scholar 

  12. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553

    Article  CAS  Google Scholar 

  13. Carlson HA, Masukawa K, McCammon JA (1999) Method for including the dynamic fluctuations of a protein in computer-aided drug design. J Phys Chem A 103:10213–10219

    Article  CAS  Google Scholar 

  14. Pang Y-P, Kozikowski AP (1994) Prediction of the binding sites of huperizine A in acetylcholinesterase by docking studies. J Comput-Aided Mol Des 8:669–681

    Article  CAS  Google Scholar 

  15. Knegtel RMA, Kuntz ID, Oshiro CM (1997) Molecular docking to ensembles of protein structures. J Mol Biol 266:424–440

    Article  CAS  Google Scholar 

  16. Bouzida D, Rejto PA, Arthurs S, Colson AB, Freer ST, Gehlhaar DK, Larson V, Luty BA, Rose PW, Verkhivker GM (1999) Computer simulations of ligand-protein binding with ensembles of protein conformations: a Monte Carlo study of HIV-1 protease binding energy landscapes. Int J Quant Chem 72:73–84

    Article  CAS  Google Scholar 

  17. Claussen H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308:377–395

    Article  CAS  Google Scholar 

  18. Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46:34–40

    Article  CAS  Google Scholar 

  19. Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M (2004) Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J Med Chem 47:45–55

    Article  CAS  Google Scholar 

  20. Källblad P, Todorov NP, Willems HMG, Alberts IL (2004) Receptor flexibility in the in silico screening of reagents in the S1’ pocket of human collagenase. J Med Chem 47:2761–2767

    Article  CAS  Google Scholar 

  21. Todorov NP, Buenemann CL, Alberts IL (2006) De novo ligand design to an ensemble of protein structures. Proteins 64:43–59

    Article  CAS  Google Scholar 

  22. Jiang F, Kim SH (1991) “Soft docking”: matching of molecular surface cubes. J Mol Biol 219:79–102

    Article  CAS  Google Scholar 

  23. Gschwend DA, Good AC, Kuntz ID (1996) Molecular docking towards drug discovery. J Mol Rec 9:175–186

    Article  CAS  Google Scholar 

  24. Ferrari AM, Wei BQ, Costantino L, Shoichet BK (2004) Soft docking and multiple receptor conformations in virtual screening. J Med Chem 47:5076–5084

    Article  CAS  Google Scholar 

  25. Carlson HA, Masukawa KM, Rubins K, Bushman FD, Jorgensen WL, Lins RD, Briggs JM, McCammon JA (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100–2114

    Article  CAS  Google Scholar 

  26. Meagher KL, Carlson HA (2004) Incorporating protein flexibility in structure-based drug discovery: using HIV-1 protease as a test case. J Am Chem Soc 126:13276–13281

    Article  CAS  Google Scholar 

  27. Damm KL, Carlson HA (2007) Exploring experimental sources of multiple protein conformations in structure-based drug design. J Am Chem Soc 129:8225–8235

    Article  CAS  Google Scholar 

  28. Wasserman ZR, Hodge CN (1996) Fitting an inhibitor into the active site of thermolysin: a molecular dynamics case study. Proteins 24:227–237

    Article  CAS  Google Scholar 

  29. Di Nola A, Roccatano D, Berendsen HJC (1994) Molecular dynamics simulation of the docking of substrates to proteins. Proteins 19:174–182

    Article  Google Scholar 

  30. Mangoni R, Roccatano D, Di Nola A (1999) Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation. Proteins 35:153–162

    Article  CAS  Google Scholar 

  31. Najmanovich R, Kuttner J, Sobolev V, Edelman M (2000) Side-chain flexibility in proteins upon ligand binding. Proteins 39:261–268

    Article  CAS  Google Scholar 

  32. Yang AY-C, Källblad P, Mancera RL (2004) Molecular modelling prediction of ligand binding site flexibility. J Comput Aided Mol Des 18:235–250

    Article  CAS  Google Scholar 

  33. Murray CW, Baxter CA, Frenkel AD (1999) The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase. J Comput-Aided Mol Des 13:547–562

    Article  CAS  Google Scholar 

  34. Kang C-H, Shin W-C, Yamagata Y, Bokcen S, Ames GF-L, Kim S-H (1991) Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7 Å resolution. J Biol Chem 266:23893–23899

    CAS  Google Scholar 

  35. Oh B-H, Pandit J, Kang C-H, Nikaido K, Gokcen S, Ames GF-L, Kim S-H (1993) Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J Biol Chem 268:11348–11355

    CAS  Google Scholar 

  36. Ames GF-L (1986) Bacterial periplasmic transport systems: structure, mechanism and evolution. Annu Rev Biochem 55:397–425

    Article  CAS  Google Scholar 

  37. Oh B-H, Ames GF-L, Kim S-H (1994) Structural basis for multiple ligand specificity of the periplasmic lysine-, arginine-, ornithine-binding protein. J Biol Chem 269:26323–26330

    CAS  Google Scholar 

  38. Quiocho FA, Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20:17–25

    Article  CAS  Google Scholar 

  39. Nikaido K, Ames GF-L (1992) Purification and characterization of the periplasmic lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium. J Biol Chem 267:20706–20712

    CAS  Google Scholar 

  40. Flocco MM, Mowbray SL (1995) Cα-based torsion angles: a simple tool to analyze protein conformational changes. Protein Sci 4:2118–2122

    Article  CAS  Google Scholar 

  41. Maiorov V, Abagyan R (1997) A new method for modeling large-scale rearrangements of protein domains. Proteins 27:410–424

    Article  CAS  Google Scholar 

  42. Keskin O, Jernigan RL, Bahar I (2000) Proteins with similar architecture exhibit similar large-scale dynamic behaviour. Biophys J 78:2093–2106

    CAS  Google Scholar 

  43. Tama F, Sanejouand Y-H (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6

    Article  CAS  Google Scholar 

  44. Pang A, Arinaminpathy Y, Sansom MSP, Biggin PC (2005) Comparative molecular dynamics–similar folds and similar motions? Proteins 61:809–822

    Article  CAS  Google Scholar 

  45. McLachlan AD (1982) Rapid comparison of protein structures. Acta Crystallogr A 38:871–873

    Article  Google Scholar 

  46. Martin, A.C.R. http://www.bioinf.org.uk/software/profit/

  47. Maple JR, Hwang M-J, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) Derivation of class II force fields 1. Methodology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem 15:162–182

    Article  CAS  Google Scholar 

  48. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  49. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  50. Verlet L (1967) Computer “experiments” on classical fluids I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  51. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  52. Schaffer L, Verkhivker GM (1998) Predicting structural effects in HIV-1 protease mutants complexes with flexible ligand docking and protein side-chain optimization. Proteins 33:295–310

    Article  CAS  Google Scholar 

  53. Frimurer TM, Peters GH, Iversen LF, Andersen HS, Moller NP, Olsen OH (2003) Ligand-induced conformational changes: improved predictions of ligand binding conformations and affinities. Biophys J 84:2273–2281

    CAS  Google Scholar 

  54. Taylor RD, Jewsbury PJ, Essex JW (2003) FDS: flexible ligand and receptor docking with a continuum solvent and soft core energy function. J Comput Chem 24:1637–1656

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AYCY gratefully acknowledges De Novo Pharmaceuticals Ltd. for the award of a postgraduate scholarship. Part of this work was funded by a Strategic Research Grant from Curtin University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. Mancera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, A.YC., Mancera, R.L. Molecular dynamics simulations of ligand-induced backbone conformational changes in the binding site of the periplasmic lysine-, arginine-, ornithine-binding protein. J Comput Aided Mol Des 22, 799–814 (2008). https://doi.org/10.1007/s10822-008-9215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9215-6

Keywords