Abstract
QSID Tool (Quantitative structure–activity relationship tool for Innovative Discovery) was developed to provide an easy-to-use, robust and high quality environmental tool for 3D QSAR. Predictive models developed with QSID Tool can accelerate the discovery of lead compounds by enabling researchers to formulate and test hypotheses for optimizing efficacy and increasing drug safety and bioavailability early in the process of drug discovery. QSID Tool was evaluated by comparison with SYBYL® using two different datasets derived from the inhibitors of Trypsin (Böhm et al., J Med Chem 42:458, 1999) and p38-MAPK (Liverton et al., J Med Chem 42:2180, 1999; Romeiro et al., J Comput Aided Mol Des 19:385, 2005; Romeiro et al., J Mol Model 12:855, 2006). The results suggest that QSID Tool is a useful model for the prediction of new analogue activities.






Similar content being viewed by others
References
Hansch C, Klein T (1986) Acc Chem Res 19:392
Virtual Computational Chemistry Laboratory http://www.vcclab.org. Accessed Feb. 2008
Cheminformatics Modeling Laboratory http://eccr.stat.ncsu.edu/ChemModLab/. Accessed Feb. 2008
Hicklin J, Moler C, Webb P, Boisvert R, Miller B, Pozo R, Remington K Jama: a Java matrix package. http://math.nist.gov/javanumerics/jama. Accessed Nov. 2007
Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003) J Chem Inf Comput Sci (JCICS) 43:1077
Paolo Marrone Joone: Java object oriented neural engine. http://www.jooneworld.com/. Accessed Jan. 2008
The Open Source Chemistry Toolbox http://openbabel.sourceforge.net. Accessed Nov. 2007
Gasteiger J, Marsili M (1978) Tetrahedron Lett 34:3181
Gasteiger J, Marsili M (1980) Tetrahedron 36:3219
JOELib: A Java based cheminformatics library http://www-ra.informatik.uni-tuebingen.de/software/joelib/. Accessed Feb. 2008
Masuda T, Jikihara T, Nakamura K, Kimura A, Takagi T, Fujiwara H (2000) J Pharm Sci 86:57
Shrake A, Rupley JA (1973) J Mol Biol 79:351
Le Grand S, Merz K (1993) J Comp Chem 14:349
Lennard-Jones JE (1931) Cohesion. Proc Phys Soc 43:461
Wang R, Liu L, Lai L, Tang Y (1998) J Mol Model 4:379
Clark M, Cramer RD III (1993) Quant Struct Act Relat 12:137
Ian H, Eibe F (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco
Herve Abdi, LEAST Squares (PLS) Regression, The University of Texas at Dallas
Hoskuldsson A (1988) J Chemometr 2:211
http://en.wikipedia.org/wiki/Neural_network. Accessed Nov. 2007
Werbos P (1974) Beyond regression: new tools for prediction and analysis in the behavioural science. PhD dissertation, Committee on Application Mathematics, Harvard University, Cambridge, MA
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation, Parallel distributed processing. MIT Press, Cambridge
Wikel JH, Dow ER, Heathman M Interpretative neural networks for QSAR. http://www.netsci.org/Science/Compchem/feature02.html. Accessed Nov. 2007
Tetko IV, Livingstone DJ, Luik AI (1995) J Chem Inf Comput Sci 35:826
Gorman RP, Sejnowski TJ (1988) Neural Nets 1:75
Böhm M, Stürzebecher J, Klebe G (1999) J Med Chem 42:458
Liverton NJ, Butcher JW, Claiborne CF, Claremon DA, Libby BE, Nguyen KT, Pitzenberger SM, Selnick HG, Smith GR, Tebben A, Vacca JP, Varga SL, Agarwal L, Dancheck K, Forsyth AJ, Fletcher DS, Frantz B, Hanlon WA, Harper CF, Hofsess SJ, Kostura M, Lin J, Luell S, O’Neill EA, O’Keefe SJ (1999) J Med Chem 42:2180
Romeiro NC, Albuquerque MG, de Alencastro RB, Ravi M, Hopfinger AJ (2005) J Comput Aided Mol Des 19:385
Romeiro NC, Albuquerque MG, de Alencastro RB, Ravi M, Hopfinger AJ (2006) J Mol Model 12:855
Molecular Networks http://www.molecular-networks.com/software/corina. Accessed Nov. 2007
A language for describing molecular Patterns http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Accessed Nov. 2007
Acknowledgments
This work is part of an internal project supported by Rexahn Pharmaceutical, Inc. The authors extend their appreciation to Drs. John Orban, Edith C. Wolff, James Song and Yonil Park for discussion and critical reviews.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Park, D.S., Kim, J.M., Lee, Y.B. et al. QSID Tool: a new three-dimensional QSAR environmental tool. J Comput Aided Mol Des 22, 873–883 (2008). https://doi.org/10.1007/s10822-008-9219-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-008-9219-2