Skip to main content

Advertisement

Log in

Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of thiazolone derivatives as hepatitis C virus NS5B polymerase allosteric inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Three-dimensional quantitative structure-activity relationship (3D-QSAR) models for a series of thiazolone derivatives as novel inhibitors bound to the allosteric site of hepatitis C virus (HCV) NS5B polymerase were developed based on CoMFA and CoMSIA analyses. Two different conformations of the template molecule and the combinations of different CoMSIA field/fields were considered to build predictive CoMFA and CoMSIA models. The CoMFA and CoMSIA models with best predictive ability were obtained by the use of the template conformation from X-ray crystal structures. The best CoMFA and CoMSIA models gave q 2 values of 0.621 and 0.685, and r 2 values of 0.950 and 0.940, respectively for the 51 compounds in the training set. The predictive ability of the two models was also validated by using a test set of 16 compounds which gave r 2pred values of 0.685 and 0.822, respectively. The information obtained from the CoMFA and CoMSIA 3D contour maps enables the interpretation of their structure-activity relationship and was also used to the design of several new inhibitors with improved activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matsuura Y (1995) Uirusu 45:105

    CAS  Google Scholar 

  2. Choo QL, Kuo G, Weiner LK, Overby LR, Bradley D, Houghton M (1989) Science 244:359. doi:10.1126/science.2523562

    Article  CAS  Google Scholar 

  3. Alter MJ, Kruszon-Moran D, Nainan OV, McQuillan GM, Gao F, Moyer LA et al (1999) N Engl J Med 341:556. doi:10.1056/NEJM199908193410802

    Article  CAS  Google Scholar 

  4. Richard ETS (2006) Nat Rev Drug Discov 5:715. doi:10.1038/nrd2134

    Article  CAS  Google Scholar 

  5. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R et al (2001) Lancet 358:958. doi:10.1016/S0140-6736(01)06102-5

    Article  CAS  Google Scholar 

  6. Wu JZ, Yao NH, Walker M, Hong Z (2005) Mini Rev Med Chem 5:1103. doi:10.2174/138955705774933310

    Article  CAS  Google Scholar 

  7. Hirashima S, Suzuki T, Ishida T, Noji S, Yata S, Ando I et al (2006) J Med Chem 49:4721. doi:10.1021/jm060269e

    Article  CAS  Google Scholar 

  8. Beaulieu PL, Bousquet Y, Gauthier J, Gillard J, Marquis M, McKercher G et al (2004) J Med Chem 47:6884. doi:10.1021/jm040134d

    Article  CAS  Google Scholar 

  9. Patel PD, Patel MR, Kaushik-Basu N, Talele TT (2008) J Chem Inf Model 48:42. doi:10.1021/ci700266z

    Article  CAS  Google Scholar 

  10. Gopalsamy A, Chopra R, Lim K, Ciszewski G, Shi M, Curran KJ et al (2006) J Med Chem 49:3052. doi:10.1021/jm060168g

    Article  CAS  Google Scholar 

  11. Harper S, Avolio S, Pacini B, DiFilippo M, Altamura S, Tomei L et al (2005) J Med Chem 48:4547. doi:10.1021/jm050056±

    Article  CAS  Google Scholar 

  12. Harper S, Pacini B, Avolio S, DiFilippo M, Migliaccio G, Laufer R et al (2005) J Med Chem 48:1314. doi:10.1021/jm049122i

    Article  CAS  Google Scholar 

  13. Gopalsamy A, Lim K, Ciszewski G, Park K, Ellingboe JW, Bloom J et al (2004) J Med Chem 47:6603. doi:10.1021/jm0401255

    Article  CAS  Google Scholar 

  14. Stansfield I, Pompei M, Conte I, Ercolani C, Migliaccio G, Jairaj M et al (2007) Bioorg Med Chem Lett 17:5143. doi:10.1016/j.bmcl.2007.06.093

    Article  CAS  Google Scholar 

  15. Summa V, Petrocchi A, Pace P, Matassa VG, DeFrancesco R, Altamura S et al (2004) J Med Chem 47:14. doi:10.1021/jm0342109

    Article  CAS  Google Scholar 

  16. DiSanto R, Fermeglia M, Ferrone M, Paneni MS, Costi R, Artico M et al (2005) J Med Chem 48:6304. doi:10.1021/jm0504454

    Article  CAS  Google Scholar 

  17. Kim J, Han JH, Chong Y (2006) Bull Korean Chem Soc 27:1919

    Google Scholar 

  18. Chan L, Reddy TJ, Proulx M, Das SK, Pereira O, Wang W et al (2003) J Med Chem 46:1283. doi:10.1021/jm0340400

    Article  CAS  Google Scholar 

  19. Louise-May S, Yang W, Nie X, Liu D, Deshpande MS, Phadke AS et al (2007) Bioorg Med Chem Lett 17:3905. doi:10.1016/j.bmcl.2007.04.103

    Article  CAS  Google Scholar 

  20. Zhou Y, Li LS, Webber S, Ayida B, Bertolini T, Sun Z et al (2007) Antiviral Res 74:A51. doi:10.1016/j.antiviral.2007.01.067

    Article  Google Scholar 

  21. Zhou Y, Li LS, Webber S, Dragovich P, Murphy D, Tran C et al (2007) Antiviral Res 74:A38. doi:10.1016/j.antiviral.2007.01.035

    Article  Google Scholar 

  22. Pfefferkorn JA, Nugent R, Gross RJ, Greene M, Mitchell MA, Reding MT et al (2005) Bioorg Med Chem Lett 15:2812. doi:10.1016/j.bmcl.2005.03.106

    Article  CAS  Google Scholar 

  23. Pfefferkorn JA, Greene ML, Nugent RA, Gross RJ, Mitchell MA, Finzel BC et al (2005) Bioorg Med Chem Lett 15:2481. doi:10.1016/j.bmcl.2005.03.066

    Article  CAS  Google Scholar 

  24. Yan S, Appleby T, Larson G, Wu JZ, Hamatake R, Hong Z et al (2006) Bioorg Med Chem Lett 16:5888. doi:10.1016/j.bmcl.2006.08.056

    Article  CAS  Google Scholar 

  25. Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959. doi:10.1021/ja00226a005

    Article  CAS  Google Scholar 

  26. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130. doi:10.1021/jm00050a010

    Article  CAS  Google Scholar 

  27. Zhang ZY, An LY, Hu WX, Xiang YH (2007) J Comput Aided Mol Des 21:145. doi:10.1007/s10822-006-9090-y

    Article  CAS  Google Scholar 

  28. Avery MA, Muraleedharan KM, Desai PV, Bandyopadhyaya AK, Furtado MM, Tekwani BL (2003) J Med Chem 46:4244. doi:10.1021/jm030181q

    Article  CAS  Google Scholar 

  29. Ding Y, Smith KL, Varaprasad CVNS, Chang E, Alexander J, Yao N (2007) Bioorg Med Chem Lett 17:841. doi:10.1016/j.bmcl.2006.08.104

    Article  CAS  Google Scholar 

  30. Yan S, Appleby T, Larson G, Wu JZ, Hamatake RK, Hong Z et al (2007) Bioorg Med Chem Lett 17:1991. doi:10.1016/j.bmcl.2007.01.024

    Article  CAS  Google Scholar 

  31. Yan S, Larson G, Wu JZ, Appleby T, Ding Y, Hamatake R et al (2007) Bioorg Med Chem Lett 17:63. doi:10.1016/j.bmcl.2006.09.095

    Article  CAS  Google Scholar 

  32. Jain AN, Koile K, Chapman D (1994) J Med Chem 37:2315. doi:10.1021/jm00041a010

    Article  CAS  Google Scholar 

  33. Labrie P, Maddaford SP, Fortin S, Rakhit S, Kotra LP, Gaudreault RC (2006) J Med Chem 49:7646. doi:10.1021/jm060239b

    Article  CAS  Google Scholar 

  34. Sybyl 6.9 (1999) Tripos Associates, Inc., St. Louis

  35. Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) J Chem Inf Comput Sci 29:163. doi:10.1021/ci00063a006

    CAS  Google Scholar 

  36. Klebe G (1994) J Mol Biol 237:212. doi:10.1006/jmbi.1994.1223

    Article  CAS  Google Scholar 

  37. Vong R, Geladi P, Wold S, Esbensen K (1988) J Chemometr 2:281. doi:10.1002/cem.1180020406

    Article  CAS  Google Scholar 

  38. Bang SJ, Cho SJ (2004) Bull Korean Chem Soc 25:1525

    Article  CAS  Google Scholar 

  39. Assefa H, Kamath S, Buolamwini JK (2003) J Comput Aided Mol Des 17:475. doi:10.1023/B:JCAM.0000004622.13865.4f

    Article  CAS  Google Scholar 

  40. Sekhar YN, Nayana MRS, Sivakumari N, Ravikumar M, Mahmood SK (2008) J Mol Graph Model 26:1338. doi:10.1016/j.jmgm.2008.01.008

    Article  CAS  Google Scholar 

  41. Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269. doi:10.1016/S1093-3263(01)00123-1

    Article  CAS  Google Scholar 

  42. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127. doi:10.1093/protein/8.2.127

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Program for New Century Excellent Talents in University (No. NCET-07-0399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Yao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, B., Du, J., Li, S. et al. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of thiazolone derivatives as hepatitis C virus NS5B polymerase allosteric inhibitors. J Comput Aided Mol Des 22, 711–725 (2008). https://doi.org/10.1007/s10822-008-9230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9230-7

Keywords