Skip to main content
Log in

Computational study on the molecular inclusion of andrographolide by cyclodextrin

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Due to the poor water solubility of andrographolide (andro), an inclusion technique has been developed to modify its physical and chemical properties so as to improve its bioavailability. In contrast with the immense experimental studies on the inclusion complexes of andro:cyclodextrin, no computational study has so far been carried out on this system. In this work, preliminary docking experiments with AutoDock were performed. Density Functional Theory (DFT) and Austin Model 1 (AM1) calculations upon the docking instances were applied to investigate the two possible modes of molecular inclusions between andro and x-cyclodextrin (xCD, where x is α, β or γ). Atoms-in-Molecules (AIM) analysis based on the B3LYP/cc-pVDZ wavefunction was applied to verify the existence of the intermolecular hydrogen bonds. It was found that the most stable complex among the six possible inclusion complexes was the one formed between andro and βCD with andro’s decalin ring moiety wrapped by CD at a ratio of 1:1. The hydrogen bonds between andro and CD were responsible for the stability of the inclusion complexes. The calculated data were found to be consistent with the experimental results. Thus, the results of this study can aid new drug design processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fujita T, Takeda Y, Takaishi Y, Yamada T, Kido M, Miura I (1984) Chem Pharm Bull (Tokyo) 32:2117

    CAS  Google Scholar 

  2. Sheeja K, Guruvayoorappan C, Kuttan G (2007) Int Immunopharmacol 7:211. doi:10.1016/j.intimp.2006.10.002

    Article  CAS  Google Scholar 

  3. Hebtemariam S (1998) Phytother Res 12:37. doi :10.1002/(SICI)1099-1573(19980201)12:1<37::AID-PTR186>3.0.CO;2-N

    Article  Google Scholar 

  4. Puri A, Saxena R, Saxena RP, Saxena KC, Srivastava V, Tandon JS (1993) J Nat Prod 56:995. doi:10.1021/np50097a002

    Article  CAS  Google Scholar 

  5. Jada SR, Subur GS, Matthews C, Hamzah AS, Lajis NH, Saad MS et al (2007) Phytochemistry 68:904. doi:10.1016/j.phytochem.2006.11.031

    Article  CAS  Google Scholar 

  6. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK (2006) J Pharm Pharmacol 58:1227. doi:10.1211/jpp.58.9.0009

    Article  CAS  Google Scholar 

  7. Xu Y, Chen A, Fry S, Barrow RA, Marshall RL, Mukkur TKS (2007) Int Immunopharmacol 7:515. doi:10.1016/j.intimp.2006.12.008

    Article  CAS  Google Scholar 

  8. Cheung HY, Cheung SH, Li JL, Cheung CS, Lai WP, Fong WF, Leung FM (2005) Planta Med 71:1106. doi:10.1055/s-2005-873128

    Article  CAS  Google Scholar 

  9. Li JL, Cheung HY, Zhang ZQ, Chan GKL, Fong WF (2007) Eur J Pharmacol 568:31. doi:10.1016/j.ejphar.2007.04.027

    Article  CAS  Google Scholar 

  10. Sheeja K, Kuttan G (2007) Immunopharmacol Immunotoxicol 29:81. doi:10.1080/08923970701282726

    Article  CAS  Google Scholar 

  11. Zhao DY, Liao KJ, Ma XY, Yan XH (2002) J Incl Phenom 43:259. doi:10.1023/A:1021223407297

    Article  CAS  Google Scholar 

  12. Ma XY, Liao ZX, Zhaong YL, Chen YZ (2000) J Incl Phenom 36:335. doi:10.1023/A:1008199827029

    Article  CAS  Google Scholar 

  13. Szejtli J (1998) Chem Rev 98:1743. doi:10.1021/cr970022c

    Article  CAS  Google Scholar 

  14. Uekama K, Hirayama F, Lrie T (1998) Chem Rev 98:2045. doi:10.1021/cr970025p

    Article  CAS  Google Scholar 

  15. Goodsell DS, Olson AJ (1990) Proteins: Struc Funct Genet 8:195. doi:10.1002/prot.340080302

    Article  CAS  Google Scholar 

  16. Morris GM, Goodsell DS, Hury R, Olson AJ (1996) J Comput Aided Mol Des 10:293. doi:10.1007/BF00124499

    Article  CAS  Google Scholar 

  17. Morris GM, Goodsell DS, Halliday RS, Hury R, Hart WE, Belew RK et al (1998) J Comput Chem 19:1639. doi :10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

    Article  CAS  Google Scholar 

  18. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902. doi:10.1021/ja00299a024

    Article  CAS  Google Scholar 

  19. Dewar MJS, Jie CX, Yu JG (1993) Tetrahedron 49:5003. doi:10.1016/S0040-4020(01)81868-8

    Article  CAS  Google Scholar 

  20. Freire RO, Rocha GB, Simas AM (2005) Inorg Chem 44:3299. doi:10.1021/ic048530+

    Article  CAS  Google Scholar 

  21. Rocha GB, Freire RO, Simas AM, Stewart JP (2006) J Comput Chem 27:1101. doi:10.1002/jcc.20425

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2003) GAUSSIAN 03 (revision B05). Gaussian Inc, Pittsburgh

    Google Scholar 

  23. Popelier PLA (2001) Theor Chem Acc 105:393. doi:10.1007/s002140000224

    CAS  Google Scholar 

  24. Schwinger J (1981) Phys Rev A 24:2353. doi:10.1103/PhysRevA.24.2353

    Article  CAS  Google Scholar 

  25. Becke AD (1982) J Chem Phys 76:6037. doi:10.1063/1.442958

    Article  CAS  Google Scholar 

  26. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  27. Popelier PLA, Aicken FM, O’Brien SE (2000) In: Hinchliffe A (ed) Chemical modelling: applications and theory, vol 1. The Royal Society of Chemistry, Cambridge, 143 pp

  28. Kosov DS, Popelier PLA (2000) J Phys Chem A 104:7339. doi:10.1021/jp0003407

    Article  CAS  Google Scholar 

  29. Cioslowski J, Mixon ST (1991) J Am Chem Soc 113:4142. doi:10.1021/ja00011a014

    Article  CAS  Google Scholar 

  30. Ángyán JG, Loos M, Mayer I (1991) J Phys Chem 98:5244. doi:10.1021/j100071a013

    Article  Google Scholar 

  31. Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304. doi:10.1021/jp983362q

    Article  CAS  Google Scholar 

  32. Popelier PLA (1996) Mol Phys 87:1169. doi:10.1080/00268979650027072

    Article  CAS  Google Scholar 

  33. Angyan JG, Jansen G, Loos M, Haettig C, Hess BA (1994) Chem Phys Lett 219:267. doi:10.1016/0009-2614(94)87056-X

    Article  CAS  Google Scholar 

  34. Koch U, Popelier PLA (1995) J Phys Chem 99:9747. doi:10.1021/j100024a016

    Article  CAS  Google Scholar 

  35. Biegler-Künig F, Schünbohm J, Derdau R, Bayles D, Bader RFW (2000) AIM 2000 version 2.0. McMaster University, Hamilton

    Google Scholar 

  36. Stuenkel CA, Dudley RE, Yen SS (1991) J Clin Endocrinol Metab 72:1054

    Article  CAS  Google Scholar 

  37. Roberts WJ (2003) US Pat Appl Publ, 10 pp, US 2003134831 A1 20030717

  38. Zhao DY, Yang SH, Hu M, Ma XY (2003) Chin Chem Lett 14:155

    CAS  Google Scholar 

  39. Khomutov SM, Sidorov IA, Dovbnya DV, Donova MV (2002) J Pharm Pharmacol 54:617. doi:10.1211/0022357021778925

    Article  CAS  Google Scholar 

  40. Singer Y, Shity H, Bar R (1991) Appl Microbiol Biotechnol 35:731. doi:10.1007/BF00169886

    Article  CAS  Google Scholar 

  41. Torricelli C, Martini A, Muggetti L, De Ponti R (1991) Int J Pharm 71:19. doi:10.1016/0378-5173(91)90063-T

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was fully supported by a Strategic Research Grant from the City University of Hong Kong (Project No. 7002109). Financial supports for the purchase of a computational device from the Innovation and Technology Fund (Project No. GHP/070/05) of Hong Kong Government is also acknowledged. The authors would also like to express their gratitude to Dr N.B. Wong for his advice and support on the calculation part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon-Yeung Cheung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2008_9247_MOESM1_ESM.doc

MOESM1 FTIR (Fourier-transform infrared spectroscopy) spectrum of spray dried Particles with different molar ratio of andro and CDs, the bond path lengths, the electron density (ρ), the Laplacian of ρ (∇2ρ), etc. (DOC 678 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Lai, WP., Zhang, Z. et al. Computational study on the molecular inclusion of andrographolide by cyclodextrin. J Comput Aided Mol Des 23, 153–162 (2009). https://doi.org/10.1007/s10822-008-9247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9247-y

Keywords

Navigation