Skip to main content

Advertisement

Log in

Computational study of the heterodimerization between μ and δ receptors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A growing body of evidence indicated that the G protein coupled receptors exist as homo- or hetero-dimers in the living cell. The heterodimerization between μ and δ opioid receptors has attracted researchers’ particular interests, it is reported to display novel pharmacological and signalling regulation properties. In this study, we construct the full-length 3D-model of μ and δ opioid receptors using the homology modelling method. Threading program was used to predict the possible templates for the N- and C-terminus domains. Then, a 30 ns molecular dynamics simulations was performed with each receptor embedded in an explicit membrane-water environment to refine and explore the conformational space. Based on the structures extracted from the molecular dynamics, the likely interface of μ–δ heterodimer was investigated through the analysis of protein–protein docking, cluster, shape complementary and interaction energy. The computational modelling works revealed that the most likely interface of heterodimer was formed between the transmembrane1,7 (TM1,7) domains of μ receptor and the TM(4,5) domains of δ receptor, with emphasis on μ-TM1 and δ-TM4, the next likely interface was μ(TM6,7)-δ(TM4,5), with emphasis on μ-TM6 and δ-TM4. Our results were consistent with previous reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G (2003) Nucleic Acids Res 31:294. doi:10.1093/nar/gkg103

    Article  CAS  Google Scholar 

  2. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) Mol Pharmacol 63:1256. doi:10.1124/mol.63.6.1256

    Article  CAS  Google Scholar 

  3. Kristiansen K (2004) Pharmacol Ther 103:21. doi:10.1016/j.pharmthera.2004.05.002

    Article  CAS  Google Scholar 

  4. Ma P, Zemmel R (2002) Nat Rev Drug Discov 1:571. doi:10.1038/nrd884

    Article  CAS  Google Scholar 

  5. Wise A, Gearing K, Rees S (2002) Drug Discov Today 7:235. doi:10.1016/S1359-6446(01)02131-6

    Article  CAS  Google Scholar 

  6. Drews J (2000) Science 287:1960. doi:10.1126/science.287.5460.1960

    Article  CAS  Google Scholar 

  7. Hopkins AL, Groom CR (2002) Nat Rev Drug Discov 1:727. doi:10.1038/nrd892

    Article  CAS  Google Scholar 

  8. Klabunde T, Hessler G (2002) ChemBioChem 3:928. doi:10.1002/1439-7633(20021004)3:10<928::AID-CBIC928>3.0.CO;2-5

    Article  CAS  Google Scholar 

  9. Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, Neve K, Fuxe K, Agnati LF, Woods AS, Ferre S, Lluis C, Bouvier M, Franco R (2003) J Biol Chem 278:46741. doi:10.1074/jbc.M306451200

    Article  CAS  Google Scholar 

  10. Bouvier M (2001) Nat Rev Neurosci 2:274. doi:10.1038/35067575

    Article  CAS  Google Scholar 

  11. Bulenger S, Marullo S, Bouvier M (2005) Trends Pharmacol Sci 26:131. doi:10.1016/j.tips.2005.01.004

    Article  CAS  Google Scholar 

  12. Fotiadis D, Jastrzebska B, Philippsen A, Muller DJ, Palczewski K, Engel A (2006) Curr Opin Struct Biol 16:252. doi:10.1016/j.sbi.2006.03.013

    Article  CAS  Google Scholar 

  13. Franco R, Canals M, Marcellino D, Ferre S, Agnati L, Mallol J, Casado V, Ciruela F, Fuxe K, Lluis C, Canela EI (2003) Trends Biochem Sci 28:238. doi:10.1016/S0968-0004(03)00065-3

    Article  CAS  Google Scholar 

  14. Maggio R, Novi F, Scarselli M, Corsini GU (2005) FEBS J 272:2939. doi:10.1111/j.1742-4658.2005.04729.x

    Article  CAS  Google Scholar 

  15. Milligan G (2004) Mol Pharmacol 66:1. doi:10.1124/mol.104.000497

    Article  CAS  Google Scholar 

  16. Milligan G (2006) Drug Discov Today 11:541. doi:10.1016/j.drudis.2006.04.007

    Article  CAS  Google Scholar 

  17. Park PS, Filipek S, Wells JW, Palczewski K (2004) Biochemistry 43:15643. doi:10.1021/bi047907k

    Article  CAS  Google Scholar 

  18. Prinster SC, Hague C, Hall RA (2005) Pharmacol Rev 57:289. doi:10.1124/pr.57.3.1

    Article  CAS  Google Scholar 

  19. Rios CD, Jordan BA, Gomes I, Devi LA (2001) Pharmacol Ther 92:71. doi:10.1016/S0163-7258(01)00160-7

    Article  CAS  Google Scholar 

  20. Terrillon S, Bouvier M (2004) EMBO Rep 5:30. doi:10.1038/sj.embor.7400052

    Article  CAS  Google Scholar 

  21. Salahpour A, Angers S, Bouvier M (2000) Trends Endocrinol Metab 11:163. doi:10.1016/S1043-2760(00)00260-5

    Article  CAS  Google Scholar 

  22. Angers S, Salahpour A, Bouvier M (2002) Annu Rev Pharmacol Toxicol 42:409. doi:10.1146/annurev.pharmtox.42.091701.082314

    Article  CAS  Google Scholar 

  23. Gazi L, Lopez-Gimenez JF, Strange PG (2002) Curr Opin Drug Discov Dev 5:756

    CAS  Google Scholar 

  24. Gomes I, Jordan BA, Gupta A, Rios C, Trapaidze N, Devi LA (2001) J Mol Med 79:226. doi:10.1007/s001090100219

    Article  CAS  Google Scholar 

  25. Lee SP, O’Dowd BF, George SR (2003) Life Sci 74:173. doi:10.1016/j.lfs.2003.09.028

    Article  CAS  Google Scholar 

  26. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) J Biol Chem 278:21655. doi:10.1074/jbc.M302536200

    Article  CAS  Google Scholar 

  27. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Nature 421:127. doi:10.1038/421127a

    Article  CAS  Google Scholar 

  28. Reddy PS, Corley RB (1998) Bioessays 20:546. doi:10.1002/(SICI)1521-1878(199807)20:7<546::AID-BIES5>3.0.CO;2-I

    Article  CAS  Google Scholar 

  29. Chen Y, Mestek A, Liu J, Yu L (1993) Biochem J 295(Pt 3):625

    CAS  Google Scholar 

  30. Waldhoer M, Bartlett SE, Whistler JL (2004) Annu Rev Biochem 73:953. doi:10.1146/annurev.biochem.73.011303.073940

    Article  CAS  Google Scholar 

  31. Wang D, Sun X, Bohn LM, Sadee W (2005) Mol Pharmacol 67:2173. doi:10.1124/mol.104.010272

    Article  CAS  Google Scholar 

  32. George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G, O’Dowd BF (2000) J Biol Chem 275:26128. doi:10.1074/jbc.M000345200

    Article  CAS  Google Scholar 

  33. Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA (2000) J Neurosci 20:RC110

    CAS  Google Scholar 

  34. Jordan BA, Devi LA (1999) Nature 399:697. doi:10.1038/21441

    Article  CAS  Google Scholar 

  35. Ananthan S, Kezar HSIII, Carter RL, Saini SK, Rice KC, Wells JL, Davis P, Xu H, Dersch CM, Bilsky EJ, Porreca F, Rothman RB (1999) J Med Chem 42:3527. doi:10.1021/jm990039i

    Article  CAS  Google Scholar 

  36. Daniels DJ, Lenard NR, Etienne CL, Law PY, Roerig SC, Portoghese PS (2005) Proc Natl Acad Sci USA 102:19208. doi:10.1073/pnas.0506627102

    Article  CAS  Google Scholar 

  37. Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA (2004) Proc Natl Acad Sci USA 101:5135. doi:10.1073/pnas.0307601101

    Article  CAS  Google Scholar 

  38. Schiller PW, Fundytus ME, Merovitz L, Weltrowska G, Nguyen TM, Lemieux C, Chung NN, Coderre TJ (1999) J Med Chem 42:3520. doi:10.1021/jm980724+

    Article  CAS  Google Scholar 

  39. Wells JL, Bartlett JL, Ananthan S, Bilsky EJ (2001) J Pharmacol Exp Ther 297:597

    CAS  Google Scholar 

  40. Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL (2005) Proc Natl Acad Sci USA 102:9050. doi:10.1073/pnas.0501112102

    Article  CAS  Google Scholar 

  41. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) J Mol Biol 342:571. doi:10.1016/j.jmb.2004.07.044

    Article  CAS  Google Scholar 

  42. Hillisch A, Pineda LF, Hilgenfeld R (2004) Drug Discov Today 9:659. doi:10.1016/S1359-6446(04)03196-4

    Article  CAS  Google Scholar 

  43. Baldwin JM, Schertler GF, Unger VM (1997) J Mol Biol 272:144

    Article  CAS  Google Scholar 

  44. Ballesteros J, Palczewski K (2001) Curr Opin Drug Discov Dev 4:561. doi:10.1006/jmbi.1997.1240

    CAS  Google Scholar 

  45. Surratt CK, Adams WR (2005) Curr Top Med Chem 5:315. doi:10.2174/1568026053544533

    Article  CAS  Google Scholar 

  46. Russell RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, Topf M, Sali A (2004) Curr Opin Struct Biol 14:313. doi:10.1016/j.sbi.2004.04.006

    Article  CAS  Google Scholar 

  47. Smith GR, Sternberg MJ (2002) Curr Opin Struct Biol 12:28. doi:10.1016/S0959-440X(02)00285-3

    Article  Google Scholar 

  48. Valencia A, Pazos F (2002) Curr Opin Struct Biol 12:368. doi:10.1016/S0959-440X(02)00333-0

    Article  CAS  Google Scholar 

  49. Dean MK, Higgs C, Smith RE, Bywater RP, Snell CR, Scott PD, Upton GJ, Howe TJ, Reynolds CA (2001) J Med Chem 44:4595. doi:10.1021/jm010290+

    Article  CAS  Google Scholar 

  50. Vohra S, Chintapalli SV, Illingworth CJ, Reeves PJ, Mullineaux PM, Clark HS, Dean MK, Upton GJ, Reynolds CA (2007) Biochem Soc Trans 35:749. doi:10.1042/BST0350749

    Article  CAS  Google Scholar 

  51. Jones DT, Taylor WR, Thornton JM (1992) Nature 358:86. doi:10.1038/358086a0

    Article  CAS  Google Scholar 

  52. Fiser A, Sali A (2003) Methods Enzymol 374:461. doi:10.1016/S0076-6879(03)74020-8

    Article  CAS  Google Scholar 

  53. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Science 302:1364. doi:10.1126/science.1089427

    Article  CAS  Google Scholar 

  54. Jones DT (1999) J Mol Biol 292:195. doi:10.1006/jmbi.1999.3091

    Article  CAS  Google Scholar 

  55. Lemer CMR, Rooman MJ, Wodak SJ (1995) Proteins-Structure Funct Genet 23:337. doi:10.1002/prot.340230308

    Article  CAS  Google Scholar 

  56. Murzin AG (1999) Proteins: Struct Funct Genet Suppl 3:88. doi:0.1002/(SICI)1097-0134(1999)37:3+<88::AID-PROT13>3.0.CO;2-3

    CAS  Google Scholar 

  57. Sippl MJ, Lackner P, Domingues FS, Prlic A, Malik R, Andreeva A, Wiederstein M (2001) Proteins: Struct Funct Genet 5:55

    Google Scholar 

  58. Fanelli F, Menziani C, Scheer A, Cotecchia S, De Benedetti PG (1998) Methods 14:302. doi:10.1006/meth.1998.0586

    Article  CAS  Google Scholar 

  59. Tusnady GE, Simon I (1998) J Mol Biol 283:489. doi:10.1006/jmbi.1998.2107

    Article  CAS  Google Scholar 

  60. Tusnady GE, Simon I (2001) Bioinformatics 17:849. doi:10.1093/bioinformatics/17.9.849

    Article  CAS  Google Scholar 

  61. Claros MG, von Heijne G (1994) Comput Appl Biosci 10:685

    CAS  Google Scholar 

  62. von Heijne G (1992) J Mol Biol 225:487. doi:10.1016/0022-2836(92)90934-C

    Article  Google Scholar 

  63. Hofmann K, Stoffel W (1993) Biol Chem Hoppe Seyler 374:166

    Google Scholar 

  64. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235. doi:10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  65. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389. doi:10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  66. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  67. Berendsen HJ, Vanderspoel D, Vandrunen R (1995) Comput Phys Commun 91:43. doi:10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  68. Vanbuuren AR, Marrink SJ, Berendsen HJC (1993) J Phys Chem 97:9206. doi:10.1021/j100138a023

    Article  CAS  Google Scholar 

  69. Berger O, Edholm O, Jahnig F (1997) Biophys J 72:2002. doi:10.1016/S0006-3495(97)78845-3

    Article  CAS  Google Scholar 

  70. Tieleman DP, Berendsen HJ, Sansom MS (1999) Biophys J 76:1757. doi:10.1016/S0006-3495(99)77337-6

    Article  CAS  Google Scholar 

  71. Tieleman DP, Sansom MS, Berendsen HJ (1999) Biophys J 76:40. doi:10.1016/S0006-3495(99)77176-6

    Article  CAS  Google Scholar 

  72. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  73. Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) J Comput Chem 18:1463. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    Article  CAS  Google Scholar 

  74. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684. doi:10.1063/1.448118

    Article  CAS  Google Scholar 

  75. Chen R, Weng ZP (2003) Proteins-Structure Funct Genet 51:397. doi:10.1002/prot.10334

    Article  CAS  Google Scholar 

  76. Casciari D, Seeber M, Fanelli F (2006) BMC Bioinformatics 7:340

    Article  CAS  Google Scholar 

  77. Mihel J, Sikic M, Tomic S, Jeren B, Vlahovicek K (2008) BMC Struct Biol 8:21. doi:10.1186/1472-6807-8-21

    Article  Google Scholar 

  78. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto

    Google Scholar 

  79. Kobilka B, Schertler GF (2008) Trends Pharmacol Sci 29:79. doi:10.1016/j.tips.2007.11.009

    Article  CAS  Google Scholar 

  80. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) Science 318:1258. doi:10.1126/science.1150577

    Article  CAS  Google Scholar 

  81. Fanelli F, De Benedetti PG (2005) Chem Rev 105:3297. doi:10.1021/cr000095n

    Article  CAS  Google Scholar 

  82. Visiers I, Ballesteros JA, Weinstein H (2002) Methods Enzymol 343:329. doi:10.1016/S0076-6879(02)43145-X

    Article  Google Scholar 

  83. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739. doi:10.1126/science.289.5480.739

    Article  CAS  Google Scholar 

  84. Huang P, Li J, Chen C, Visiers I, Weinstein H, Liu-Chen LY (2001) Biochemistry 40:13501. doi:10.1021/bi010917q

    Article  CAS  Google Scholar 

  85. Huang P, Visiers I, Weinstein H, Liu-Chen LY (2002) Biochemistry 41:11972. doi:10.1021/bi026067b

    Article  CAS  Google Scholar 

  86. Spivak CE, Beglan CL, Seidleck BK, Hirshbein LD, Blaschak CJ, Uhl GR, Surratt CK (1997) Mol Pharmacol 52:983

    CAS  Google Scholar 

  87. Surratt CK, Johnson PS, Moriwaki A, Seidleck BK, Blaschak CJ, Wang JB, Uhl GR (1994) J Biol Chem 269:20548

    CAS  Google Scholar 

  88. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) Nucleic Acids Res 32:W96. doi:10.1093/nar/gkh354

    Article  CAS  Google Scholar 

  89. Fan T, Varghese G, Nguyen T, Tse R, O’Dowd BF, George SR (2005) J Biol Chem 280:38478. doi:10.1074/jbc.M505644200

    Article  CAS  Google Scholar 

  90. Krol M, Tournier AL, Bates PA (2007) Proteins 68:159. doi:10.1002/prot.21391

    Article  CAS  Google Scholar 

  91. Filizola M, Olmea O, Weinstein H (2002) Protein Eng 15:881. doi:10.1093/protein/15.11.881

    Article  CAS  Google Scholar 

  92. Jones S, Thornton JM (1997) J Mol Biol 272:121. doi:10.1006/jmbi.1997.1234

    Article  CAS  Google Scholar 

  93. Keskin O, Gursoy A, Ma B, Nussinov R (2008) Chem Rev 108:1225. doi:10.1021/cr040409x

    Article  CAS  Google Scholar 

  94. Lodowski DT, Salom D, Le Trong I, Teller DC, Ballesteros JA, Palczewski K, Stenkamp RE (2007) J Struct Biol 158:455. doi:10.1016/j.jsb.2007.01.017

    Article  CAS  Google Scholar 

  95. Guo W, Shi L, Javitch JA (2003) J Biol Chem 278:4385. doi:10.1074/jbc.C200679200

    Article  CAS  Google Scholar 

  96. Berthouze M, Rivail L, Lucas A, Ayoub MA, Russo O, Sicsic S, Fischmeister R, Berque-Bestel I, Jockers R, Lezoualc’h F (2007) Biochem Biophys Res Commun 356:642. doi:10.1016/j.bbrc.2007.03.030

    Article  CAS  Google Scholar 

  97. Mancia F, Assur Z, Herman AG, Siegel R, Hendrickson WA (2008) EMBO Rep 9:363. doi:10.1038/embor.2008.27

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 20772052, 20621091, and 20525206), the Specialized Research Fund for the Doctoral Program in Higher Education Institutions (No. 20060730017), and the Chang Jiang Program of the Ministry of Education of China. The authors thank The High Performance Center of Lanzhou University for providing computational resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Kai, M., Jin, L. et al. Computational study of the heterodimerization between μ and δ receptors. J Comput Aided Mol Des 23, 321–332 (2009). https://doi.org/10.1007/s10822-009-9262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9262-7

Keywords

Navigation