Skip to main content

Advertisement

Log in

Identification of novel target sites and an inhibitor of the dengue virus E protein

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Dengue and related flaviviruses represent a significant global health threat. The envelope glycoprotein E mediates virus attachment to a host cell and the subsequent fusion of viral and host cell membranes. The fusion process is driven by conformational changes in the E protein and is an essential step in the virus life cycle. In this study, we analyzed the pre-fusion and post-fusion structures of the dengue virus E protein to identify potential novel sites that could bind small molecules, which could interfere with the conformational transitions that mediate the fusion process. We used an in silico virtual screening approach combining three different docking algorithms (DOCK, GOLD and FlexX) to identify compounds that are likely to bind to these sites. Seven structurally diverse molecules were selected to test experimentally for inhibition of dengue virus propagation. The best compound showed an IC50 in the micromolar range against dengue virus type 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DENV:

Dengue virus

DMEM:

Dulbecco’s modified Eagle’s medium

FCS:

Fetal calf serum

JEV:

Japanese encephalitis virus

MTT:

Methyl thiazole tetrazolium

PDB:

Protein Data Bank

PBS:

Phosphate buffered saline

pfu:

Plaque-forming units

TBEV:

Tick-borne encephalitis virus

WNV:

West Nile virus

References

  1. Jacobs MG, Young PR (1998) Curr Opin Infect Dis 11:319

    CAS  Google Scholar 

  2. Anderson R, King AD, Innis BL (1992) J Gen Virol 73:2155. doi:10.1099/0022-1317-73-8-2155

    Article  CAS  Google Scholar 

  3. Guirakhoo F, Heinz FX, Mandl CW et al (1991) J Gen Virol 72:1323. doi:10.1099/0022-1317-72-6-1323

    Article  CAS  Google Scholar 

  4. Allison SL, Schalich J, Stiasny K et al (1995) J Virol 69:695

    CAS  Google Scholar 

  5. Modis Y, Ogata S, Clements D et al (2004) Nature 427:313. doi:10.1038/nature02165

    Article  CAS  Google Scholar 

  6. Kampmann T, Mueller DS, Mark AE et al (2006) Structure 14:1481. doi:10.1016/j.str.2006.07.011

    Article  CAS  Google Scholar 

  7. Heinz FX, Allison SL (2001) Curr Opin Microbiol 4:450. doi:10.1016/S1369-5274(00)00234-4

    Article  CAS  Google Scholar 

  8. Modis Y, Ogata S, Clements D et al (2003) Proc Natl Acad Sci USA 100:6986. doi:10.1073/pnas.0832193100

    Article  CAS  Google Scholar 

  9. Rey FA, Heinz FX, Mandl C et al (1995) Nature 375:291. doi:10.1038/375291a0

    Article  CAS  Google Scholar 

  10. Bressanelli S, Stiasny K, Allison SL et al (2004) EMBO J 23:728. doi:10.1038/sj.emboj.7600064

    Article  CAS  Google Scholar 

  11. Morrey JD, Smee DF, Sidwell RW et al (2002) Antiviral Res 55:107. doi:10.1016/S0166-3542(02)00013-X

    Article  CAS  Google Scholar 

  12. Puig-Basagoiti F, Tilgner M, Forshey BM et al (2006) Antimicrob Agents Chemother 50:1320. doi:10.1128/AAC.50.4.1320-1329.2006

    Article  CAS  Google Scholar 

  13. Zhang N, Chen HM, Koch V et al (2003) J Med Chem 46:4776. doi:10.1021/jm030277k

    Article  CAS  Google Scholar 

  14. Knox JE, Ma NL, Yin Z et al (2006) J Med Chem 49:6585. doi:10.1021/jm0607606

    Article  CAS  Google Scholar 

  15. Leung D, Schroder K, White H et al (2001) J Biol Chem 276:45762. doi:10.1074/jbc.M107360200

    Article  CAS  Google Scholar 

  16. Whitby K, Pierson TC, Geiss B et al (2005) J Virol 79:8698. doi:10.1128/JVI.79.14.8698-8706.2005

    Article  CAS  Google Scholar 

  17. Courageot MP, Frenkiel MP, Dos Santos CD et al (2000) J Virol 74:564

    Article  CAS  Google Scholar 

  18. Wu SF, Lee CJ, Liao CL et al (2002) J Virol 76:3596. doi:10.1128/JVI.76.8.3596-3604.2002

    Article  CAS  Google Scholar 

  19. Chu JJ, Yang PL (2007) Proc Natl Acad Sci USA 104:3520. doi:10.1073/pnas.0611681104

    Article  CAS  Google Scholar 

  20. Mathews JH, Roehrig JT (1984) J Immunol 132:1533

    CAS  Google Scholar 

  21. Kimura-Kuroda J, Yasui K (1988) J Immunol 141:3606

    CAS  Google Scholar 

  22. Brandriss MW, Schlesinger JJ, Walsh EE et al (1986) J Gen Virol 67(Pt 2):229. doi:10.1099/0022-1317-67-2-229

    Article  Google Scholar 

  23. Shimoni Z, Niven MJ, Pitlick S et al (2001) Emerg Infect Dis 7:759

    Article  CAS  Google Scholar 

  24. Liao M, Kielian M (2005) J Cell Biol 171:111. doi:10.1083/jcb.200507075

    Article  CAS  Google Scholar 

  25. McCown M, Diamond MS, Pekosz A (2003) Virology 313:514. doi:10.1016/S0042-6822(03)00341-6

    Article  CAS  Google Scholar 

  26. Bai F, Wang T, Pal U et al (2005) J Infect Dis 191:1148. doi:10.1086/428507

    Article  CAS  Google Scholar 

  27. Adelman ZN, Sanchez-Vargas I, Travanty EA et al (2002) J Virol 76:12925. doi:10.1128/JVI.76.24.12925-12933.2002

    Article  CAS  Google Scholar 

  28. Bai F, Town T, Pradhan D et al (2007) J Virol 81:2047. doi:10.1128/JVI.01840-06

    Article  CAS  Google Scholar 

  29. Hrobowski YM, Garry RF, Michael SF (2005) Virol J 2:49. doi:10.1186/1743-422X-2-49

    Article  CAS  Google Scholar 

  30. Marks RM, Lu H, Sundaresan R et al (2001) J Med Chem 44:2178. doi:10.1021/jm000412i

    Article  CAS  Google Scholar 

  31. McInnes C (2007) Curr Opin Chem Biol 11:494. doi:10.1016/j.cbpa.2007.08.033

    Article  CAS  Google Scholar 

  32. Kirchmair J, Distinto S, Schuster D et al (2008) Curr Med Chem 15:2040. doi:10.2174/092986708785132843

    Article  CAS  Google Scholar 

  33. Coupez B, Lewis RA (2006) Curr Med Chem 13:2995. doi:10.2174/092986706778521797

    Article  CAS  Google Scholar 

  34. Yang JM, Chen YF, Tu YY et al (2007) PLoS ONE 2:e428. doi:10.1371/journal.pone.0000428

    Article  CAS  Google Scholar 

  35. Brady GP Jr, Stouten PF (2000) J Comput Aided Mol Des 14:383. doi:10.1023/A:1008124202956

    Article  CAS  Google Scholar 

  36. Landau M, Mayrose I, Rosenberg Y et al (2005) Nucleic Acids Res 33:W299. doi:10.1093/nar/gki370

    Article  CAS  Google Scholar 

  37. Zhang W, Chipman PR, Corver J et al (2003) Nat Struct Biol 10:907. doi:10.1038/nsb990

    Article  CAS  Google Scholar 

  38. Bodian DL, Yamasaki RB, Buswell RL et al (1993) Biochemistry 32:2967. doi:10.1021/bi00063a007

    Article  CAS  Google Scholar 

  39. Lipinski CA, Lombardo F, Dominy BW et al (1997) Adv Drug Deliv Rev 23:3. doi:10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  40. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Proteins 52:609. doi:10.1002/prot.10465

    Article  CAS  Google Scholar 

  41. Rarey M, Kramer B, Lengauer T et al (1996) J Mol Biol 261:470. doi:10.1006/jmbi.1996.0477

    Article  CAS  Google Scholar 

  42. Kuntz ID, Blaney JM, Oatley SJ et al (1982) J Mol Biol 161:269. doi:10.1016/0022-2836(82)90153-X

    Article  CAS  Google Scholar 

  43. Wang R, Lai L, Wang S (2002) J Comput Aided Mol Des 16:11. doi:10.1023/A:1016357811882

    Article  CAS  Google Scholar 

  44. Kontoyianni M, McClellan LM, Sokol GS (2004) J Med Chem 47:558. doi:10.1021/jm0302997

    Article  CAS  Google Scholar 

  45. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127. doi:10.1093/protein/8.2.127

    Article  CAS  Google Scholar 

  46. Nybakken GE, Nelson CA, Chen BR et al (2006) J Virol 80:11467. doi:10.1128/JVI.01125-06

    Article  CAS  Google Scholar 

  47. Kolaskar AS, Kulkarni-Kale U (1999) Virology 261:31. doi:10.1006/viro.1999.9859

    Article  CAS  Google Scholar 

  48. Modis Y, Ogata S, Clements D et al (2005) J Virol 79:1223. doi:10.1128/JVI.79.2.1223-1231.2005

    Article  CAS  Google Scholar 

  49. Subbarao N, Haneef I (1991) Protein Eng 4:877. doi:10.1093/protein/4.8.877

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs Kolaskar and Kulkarni-Kale, University of Pune, India, for providing the coordinates of the structure of Japanese encephalitis virus E protein, and Charlie Huang for helpful discussions. This work was funded by a grant from the National Health and Medical Research Council (NHMRC, Australia) to PRY and BK. BK is an Australian Research Council (ARC) Federation Fellow and NHMRC Honorary Research Fellow. RY was a recipient of the 2006 Endeavour Australia Cheung Kong Award for Asian Scholars and was supported by a Research Fellowship from the Indian Council of Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bostjan Kobe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1321 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yennamalli, R., Subbarao, N., Kampmann, T. et al. Identification of novel target sites and an inhibitor of the dengue virus E protein. J Comput Aided Mol Des 23, 333–341 (2009). https://doi.org/10.1007/s10822-009-9263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9263-6

Keywords

Navigation