Skip to main content
Log in

Combinatorial library-based design with Basis Products

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Uncovering useful lead compounds from a vast virtual library of synthesizable compounds continues to be of tremendous interest to pharmaceutical researchers. Here we present the concept of Basis Products (BPs), a new and broadly applicable method for achieving efficient selections from a combinatorial library. By definition, Basis Products are a strategically selected subset of compounds from a potentially very large combinatorial library, and any compound in a combinatorial library can represented by its BPs. In this article we will show how to use BP docking scores to find the top compounds of a combinatorial library. Compared with the brute-force docking of an entire virtual library, docking with BPs are much more efficient because of the substantial size reduction, saving both time and resources. We will also demonstrate how BPs can be used for property-based combinatorial library designs. Furthermore, BPs can also be considered as fragments carrying chemistry knowledge, hence they can potentially be used in combination with any fragment-based design method. Therefore, BPs can be used to integrate combinatorial design with structure-based design and/or fragment-based design. Other potential applications of BPs include lead hopping and consensus core building, which we will describe briefly as well in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caldwell GW, Ritchie DM, Masucci JA, Hageman W, Yan Z (2001) Curr Top Med Chem 1:353

    Article  CAS  Google Scholar 

  2. Kerns EH (2001) J Pharm Sci 90:1838

    Article  CAS  Google Scholar 

  3. White RE (2000) Annu Rev Pharmacol Toxicol 40:133

    Article  CAS  Google Scholar 

  4. Ajay (2002) Curr Top Med Chem 2:1273

    Article  CAS  Google Scholar 

  5. Egan WJ, Walters WP, Murcko MA (2002) Curr Opin Drug Discov Devel 5:540

    CAS  Google Scholar 

  6. Muegge I (2003) Med Res Rev 29:302

    Article  Google Scholar 

  7. Hopkins AL, Groom CR, Alex A (2004) Drug Discov Today 9:430

    Article  Google Scholar 

  8. Abad-Zapatero C, Metz JT (2005) Drug Discov Today 10:464

    Article  Google Scholar 

  9. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Science 274:1531

    Article  CAS  Google Scholar 

  10. Hajduk PJ, Sheppard G, Nettesheim DG, Olejniczak ET, Shuker SB, Meadows RP, Steinman DH, Carrera GM Jr, Marcotte PA, Severin J, Walter K, Smith H, Gubbins E, Simmer R, Holzman TF, Morgan DW, Davidsen SK, Summers JB, Fesik SW (1997) J Am Chem Soc 119:5818

    Article  CAS  Google Scholar 

  11. Hann MM, Leach AR, Harper G (2001) J Chem Inf Comput Sci 41:856

    CAS  Google Scholar 

  12. Jahnke W, Erlanson DA (eds) (2006) Fragment-based approaches in drug discovery. Wiley, Weinheim

    Google Scholar 

  13. Erlanson DA, McDowell RS, O’Brien T (2004) J Med Chem 47:3463

    Article  CAS  Google Scholar 

  14. Hajduk PJ, Greer J (2007) Nat Rev Drug Discov 6:211

    Article  CAS  Google Scholar 

  15. Hubbard RE, Chen I, Davis B (2007) Curr Opin Drug Discov Devel 10:289

    CAS  Google Scholar 

  16. Lebl M (1999) J Comb Chem 1:3

    Article  CAS  Google Scholar 

  17. Leach AR, Bradshaw J, Green DVS, Hann MM, Delany JJIII (1999) J Chem Inf Comput Sci 39:1161

    CAS  Google Scholar 

  18. Yasri A, Berthelot D, Gijsen H, Thielemans T, Marichal P, Engels M, Hoflack J (2004) J Chem Inf Comput Sci 44:2199

    CAS  Google Scholar 

  19. Peng Z et al. Paper on PGVL Hub: the tool

  20. Weller HN, Nirschl DS, Petrillo EW, Poss MA, Andres CJ, Cavallaro GL, Echols MM, Grant-Young KA, Houston JG, Miller AV, Swann RT (2006) J Comb Chem 8:664

    Article  CAS  Google Scholar 

  21. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Deliv Rev 23:3

    Article  CAS  Google Scholar 

  22. Rishton GM (2003) Drug Discov Today 8:86

    Article  CAS  Google Scholar 

  23. Jalaie M, Shanmugasundaram V (2006) Mini Rev Med Chem 6:1159

    Article  CAS  Google Scholar 

  24. Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN (2007) Curr Protein Pept Sci 8:329

    Article  CAS  Google Scholar 

  25. Shi S, Peng Z, Kostrowicki J, Paderes G, Kuki A (2000) J Mol Graph Model 18:478

    Article  CAS  Google Scholar 

  26. Ghosh S, Nie A, An J, Huang Z (2006) Curr Opin Chem Biol 10:194

    Article  CAS  Google Scholar 

  27. Sun Y, Ewing TJA, Skillman AG, Kuntz ID (1998) J Comput Aided Mol Design 12:597–604

    Article  CAS  Google Scholar 

  28. Makino S, Ewing TJ, Kuntz ID (1999) J Comput Aided Mol Design 13:513–532

    Article  CAS  Google Scholar 

  29. Johnson P, Talk at the Innovative Computational Applications Conference, San Francisco, CA, USA, Oct, 1999. VLSPROUT is an extension version of SPROUT: Gillet V, Johnson AP, Mata P, Sike S, Williams P (1993) J Comput Aided Mol Design 7: 127

  30. Leach AR, Bryce RA, Robinson AJ (2000) J Mol Graph Model 18:358

    Article  CAS  Google Scholar 

  31. Sprous DG, Lowis DR, Leonard JM, Heritage T, Burkett SN, Baker DS, Clark RD (2004) J Comb Chem 6:530

    Article  CAS  Google Scholar 

  32. Gastreich M, Lilienthal M, Briem H, Claussen H (2006) J Comput-Aided Mol Design 20:717

    Article  CAS  Google Scholar 

  33. Rarey M, Lengauer T (2000) Persp Drug Discov Design 20:63

    Article  CAS  Google Scholar 

  34. Degen J, Rarey M (2006) Chem Med Chem 1:854

    CAS  Google Scholar 

  35. Diller DJ, Merz KM Jr (2001) Proteins Struct Func Genet 43:113

    Article  CAS  Google Scholar 

  36. Diller DJ, Merz KM Jr (2006) US Patent No. US 7065453, June 20

  37. Schellhammer I, Rarey M (2007) J Comput Aided Mol Des 21:223

    Article  CAS  Google Scholar 

  38. Zhou JZ (2008) Curr Opin Chem Biol 12:379

    Article  CAS  Google Scholar 

  39. Boehm M, Wu T-Y, Claussen H, Lemmen C (2008) J Med Chem 51:2468

    Article  CAS  Google Scholar 

  40. Na J, Kostrowick J et al. Paper on PGVL Hub: the foundation

  41. Hu J et al. Paper on Lead-Centric design inside PGVL Hub

  42. Kim S, Oh CH, Ko JS, Ahn KH, Kim YJ (1985) J Org Chem 50:1927

    Article  CAS  Google Scholar 

  43. Bartoli S, Fincham CI, Fattori D (2007) Curr Opin Drug Discov Devel 10:422

    CAS  Google Scholar 

  44. Hajduk PJ (2006) J Med Chem 49:6972

    Article  CAS  Google Scholar 

  45. Leach AR, Hann MM, Burrows JN, Griffen EJ (2006) Mol Biosyst 2:430

    Article  Google Scholar 

  46. Jencks WP (1981) Proc Natl Acad Sci USA 78:4046–4050

    Article  CAS  Google Scholar 

  47. Murray CW, Verdonk ML (2002) J Comput Aided Mol Design 16:741–753

    Article  CAS  Google Scholar 

  48. Böhm H-J, Stahl M (2002) Rev Comput Chem 18:41

    Google Scholar 

  49. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Proteins Struct Funct Genet 47:409

    Article  CAS  Google Scholar 

  50. Rajamani R, Good AC (2007) Curr Opin Drug Discov Devel 10:308

    CAS  Google Scholar 

  51. Bolin JT, Filman DJ, Matthews DA, Hamlin RC, Kraut J (1982) J Biol Chem 257:13650

    CAS  Google Scholar 

  52. The Available Chemical Database (ACD): http://www.symyx.com/

  53. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel L, Freer S (1995) Chem Biol 2:317

    Article  CAS  Google Scholar 

  54. Verkhivker GM, Rejto PA, Gehlhaar DK, Freer S (1996) Proteins Struct Funct Genet 25:342

    Article  CAS  Google Scholar 

  55. Walters WP, Stahl MT, Murcko MA (1998) Drug Discov Today 3:160

    Article  CAS  Google Scholar 

  56. Clarifson PS, Walters PW (2002) Mol Div 5:185

    Article  Google Scholar 

  57. Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92:4796

    Article  CAS  Google Scholar 

  58. Benson SW (1976) Thermochemical kinetics. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Atsuo Kuki for his visionary guidance of PGVL Hub project at Pfizer, Jerry Hu for his help in generating data for Table 2, and a long list of other colleagues who helped in one way or another. We’d also like to thank Beth Lunney for reading the manuscript and offering insightful feedbacks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Zhongxiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J.Z., Shi, S., Na, J. et al. Combinatorial library-based design with Basis Products. J Comput Aided Mol Des 23, 725–736 (2009). https://doi.org/10.1007/s10822-009-9297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9297-9

Keywords

Navigation