Skip to main content

Advertisement

Log in

Studies of chirality effect of 4-(phenylamino)-pyrrolo[2,1-f][1,2,4]triazine on p38α by molecular dynamics simulations and free energy calculations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

4-(Phenylamino)-pyrrolo[2,1-f][1,2,4]triazines have been discovered as inhibitors of p38α. Experimental assays have proven that the configuration of α-Me-benzyl connected with amide at C6 is essential for the binding affinity. The S-configured inhibitor (11j) displays 80 times more potency than the R-configured one (11k). Here we investigated the mechanism how different configurations influence the binding affinity using molecular dynamics simulations, free energy calculations and free energy decomposition analysis. We found that the van der Waals interactions play the most important role in differentiating the activities between 11j and 11k with p38α. The difference of the van der Waals interactions is primarily determined by two residues, LEU108 and LEU167. Consequently stabilization of pyrrolo[2,1-f][1,2,4]triazine ring is important for the activities of inhibitors. Meanwhile we observed that the different configuration of the α-Me-benzyl group leads to the difference of binding between 11j and 11k. In conclusion, our work shows that it is feasible to analyze the chirality effect of inhibitors with different configurations by molecular dynamics simulations and free energy calculations, and provides useful information for drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. English JM, Cobb MH (2002) Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 23:40–45

    Article  CAS  Google Scholar 

  2. Salituro FG, Germann UA, Wilson KP, Bemis GW, Fox T, Su MSS (1999) Inhibitors of p38 MAP kinase: therapeutic intervention in cytokine-mediated diseases. Curr Med Chem 6:807–823

    CAS  Google Scholar 

  3. Foster ML, Halley F, Souness JE (2000) Potential of p38 inhibitors in the treatment of rheumatoid arthritis. Drug News & Perspect 13:488–497

    CAS  Google Scholar 

  4. Kumar S, Boehm J, Lee JC (2003) p38 map kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2:717–726

    Article  CAS  Google Scholar 

  5. Saklatvala J (2004) The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 4:372–377

    Article  CAS  Google Scholar 

  6. Choy EHS, Panayi GS (2001) Mechanisms of disease: cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916

    Article  CAS  Google Scholar 

  7. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A map kinase targeted by endotoxin and hyperosmolarity in mammalian-cells. Science 265:808–811

    Article  CAS  Google Scholar 

  8. Han JH, Lee JD, Tobias PS, Ulevitch RJ (1993) Endotoxin induces rapid protein-tyrosine phosphorylation in 70z/3 cells expressing Cd14. J Biol Chem 268:25009–25014

    CAS  Google Scholar 

  9. Jiang Y, Chen CH, Li ZJ, Guo W, Gegner JA, Lin SC, Han JH (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38 beta). J Biol Chem 271:17920–17926

    Article  CAS  Google Scholar 

  10. Lechner C, Zahalka MA, Giot JF, Moller NPH, Ullrich A (1996) ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci USA 93:4355–4359

    Article  CAS  Google Scholar 

  11. Li ZJ, Jiang Y, Ulevitch RJ, Han JH (1996) The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun 228:334–340

    Article  CAS  Google Scholar 

  12. Cuenda A, Dorow DS (1998) Differential activation of stress-activated protein kinase kinases SKK4/MKK7 and SKK1/MKK4 by the mixed-lineage kinase-2 and mitogen-activated protein kinase kinase (MKK) kinase-1. Biochem J 333:11–15

    CAS  Google Scholar 

  13. Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR (1997) Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 235:533–538

    Article  CAS  Google Scholar 

  14. Jiang Y, Gram H, Zhao M, New LG, Gu J, Feng LL, DiPadova F, Ulevitch RJ, Han JH (1997) Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38 delta. J Biol Chem 272:30122–30128

    Article  CAS  Google Scholar 

  15. Fearns C, Kline L, Gram H, Di Padova F, Zurini M, Han J, Ulevitch RJ (2000) Coordinate activation of endogenous p38 alpha, beta, gamma, and delta by inflammatory stimuli. J Leukoc Biol 67:705–711

    CAS  Google Scholar 

  16. Allen M, Svensson L, Roach M, Hambor J, McNeish J, Gabel CA (2000) Deficiency of the stress kinase p38 alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J Exp Med 191:859–869

    Article  CAS  Google Scholar 

  17. Hale KK, Trollinger D, Rihanek M, Manthey CL (1999) Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J Immunol 162:4246–4252

    CAS  Google Scholar 

  18. Cirillo PF, Pargellis C, Regan JT (2002) The non-diaryl heterocycle classes of p38 MAP kinase inhibitors. Curr Top Med Chem 2:1021–1035

    Article  CAS  Google Scholar 

  19. Kumar S, Blake SM (2005) Pharmacological potential of p38 MAPK inhibitors. In: Inhibitors of protein kinases and protein phosphates, vol 167. pp 65–83

  20. Adams JL, Badger AM, Kumar S, Lee JC (2001) p38 MAP kinase: molecular target for the inhibition of pro-inflammatory cytokines. Prog Med Chem 38:1–60

    Article  CAS  Google Scholar 

  21. Jackson PF, Bullington JL (2002) Pyridinylimidazole based p38 MAP kinase inhibitors. Curr Top Med Chem 2:1011–1020

    Article  CAS  Google Scholar 

  22. Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL (2000) Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47:185–201

    Article  CAS  Google Scholar 

  23. Leftheris K, Ahmed G, Chan R, Dyckman AJ, Hussain Z, Ho K, Hynes J, Letourneau J, Li W, Lin SQ et al (2004) The discovery of orally active triaminotriazine aniline amides as inhibitors of p38 MAP kinase. J Med Chem 47:6283–6291

    Article  CAS  Google Scholar 

  24. Gill AL, Frederickson M, Cleasby A, Woodhead SJ, Carr MG, Woodhead AJ, Walker MT, Congreve MS, Devine LA, Tisi D (2005) Identification of novel p38 alpha MAP kinase inhibitors using fragment-based lead generation. J Med Chem 48:414–426

    Article  CAS  Google Scholar 

  25. Goldberg DR, Hao MH, Qian KC, Swinamer AD, Gao DHA, Xiong Z, Sarko C, Berry A, Lord J, Magolda RL (2007) Discovery and optimization of p38 inhibitors via computer-assisted drug design. J Med Chem 50:4016–4026

    Article  CAS  Google Scholar 

  26. Hynes J, Dyckman AJ, Lin SQ, Wrobleski ST, Wu H, Gillooly KM, Kanner SB, Lonial H, Loo D, McIntyre KW (2008) Design, synthesis, and anti-inflammatory properties of orally active 4-(phenylamino)-pyrrolo[2, 1-f][1, 2, 4]triazine p38 alpha mitogen-activated protein kinase inhibitors. J Med Chem 51:4–16

    Article  CAS  Google Scholar 

  27. Huo SH, Wang JM, Cieplak P, Kollman PA, Kuntz ID (2002) Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design. J Med Chem 45:1412–1419

    Article  CAS  Google Scholar 

  28. Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43:3786–3791

    Article  CAS  Google Scholar 

  29. Weis A, Katebzadeh K, Soderhjelm P, Nilsson I, Ryde U (2006) Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 49:6596–6606

    Article  CAS  Google Scholar 

  30. Wang JM, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  31. Hou TJ, Chen K, McLaughlin WA, Lu BZ, Wang W (2006) Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. Plos Comput Biol 2:46–55

    Article  CAS  Google Scholar 

  32. Hou TJ, Guo SL, Xu XJ (2002) Predictions of binding of a diverse set of ligands to gelatinase-A by a combination of molecular dynamics and continuum solvent models. J Phys Chem B 106:5527–5535

    Article  CAS  Google Scholar 

  33. Hou TJ, Yu R (2007) Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. J Med Chem 50:1177–1188

    Article  CAS  Google Scholar 

  34. Wang JM, Hou TJ, Xu XJ (2006) Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput-Aided Drug Des 2:287–306

    Article  CAS  Google Scholar 

  35. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  36. Hou TJ, McLaughlin W, Lu B, Chen K, Wang W (2006) Prediction of binding affinities between the human amphiphysin-1 SH3 domain and its peptide ligands using homology modeling, molecular dynamics and molecular field analysis. J Proteome Res 5:32–43

    Article  CAS  Google Scholar 

  37. Hou TJ, Zhang W, Case DA, Wang W (2008) Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain. J Mol Biol 376:1201–1214

    Article  CAS  Google Scholar 

  38. Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras-Raf. J Comput Chem 25:238–250

    Article  CAS  Google Scholar 

  39. Hou T, McLaughlin WA, Wang W (2008) Evaluating the potency of HIV-1 protease drugs to combat resistance. Proteins 71:1163–1174

    Article  CAS  Google Scholar 

  40. SYBYL molecular simulation package (2004) http://www.sybyl.com

  41. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  42. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC et al (2004) Gaussian 03. Gaussian Inc., Wallingford CT

    Google Scholar 

  44. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges—the resp model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  45. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  46. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Kleins ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  47. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  48. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of cartesian equations of motion of a system with constraints—molecular-dynamics of N-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  49. Darden T, York D, Pedersen L (1993) Particle Mesh Ewald: an N·Log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  50. Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230

    Article  CAS  Google Scholar 

  51. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55:383–394

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the Natural Science Foundation of China (No. 20373089). We thank Prof. Xiaojie Xu in Department of Chemistry of Peking University for providing access to computer software such as AMBER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjuan Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Cui, W. & Ji, M. Studies of chirality effect of 4-(phenylamino)-pyrrolo[2,1-f][1,2,4]triazine on p38α by molecular dynamics simulations and free energy calculations. J Comput Aided Mol Des 23, 737–745 (2009). https://doi.org/10.1007/s10822-009-9298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9298-8

Keywords

Navigation