Abstract
Phosphoinositide 3-kinases (PI3Ks) inhibitors have treatment potential for cancer, diabetes, cardiovascular disease, chronic inflammation and asthma. A consensus model consisting of three base classifiers (AODE, kNN, and SVM) trained with 1,283 positive compounds (PI3K inhibitors), 16 negative compounds (PI3K non-inhibitors) and 64,078 generated putative negatives was developed for predicting compounds with PI3K inhibitory activity of IC50 ≤ 10 μM. The consensus model has an estimated false positive rate of 0.75%. Nine novel potential inhibitors were identified using the consensus model and several of these contain structural features that are consistent with those found to be important for PI3K inhibitory activities. An advantage of the current model is that it does not require knowledge of 3D structural information of the various PI3K isoforms, which is not readily available for all isoforms.







Similar content being viewed by others
References
Cantley LC (2002) Science 296:1655–1657
Wymann MP, Zvelebil MJ, Laffargue M (2003) Trends Pharmacol Sci 24:366–376
Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Biochim Biophys Acta, Proteins Proteomics 1784:159–185
Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) Cell 125:733–747
Xie P, Williams DS, Atilla-Gokcumen GE, Milk L, Xiao M, Smalley KS, Herlyn M, Meggers E, Marmorstein R (2008) ACS Chem Biol 3:305–316
Hayakawa M, Kaizawa H, Moritomo H, Koizumi T, Ohishi T, Okada M, Ohta M, Tsukamoto S, Parker P, Workman P, Waterfield M (2006) Bioorg Med Chem 14:6847–6858
Kendall JD, Rewcastle GW, Frederick R, Mawson C, Denny WA, Marshall ES, Baguley BC, Chaussade C, Jackson SP, Shepherd PR (2007) Bioorg Med Chem 15:7677–7687
Wee S, Lengauer C, Wiederschain D (2008) Curr Opin Oncol 20:77–82
Pomel V, Klicic J, Covini D, Church DD, Shaw JP, Roulin K, Burgat-Charvillon F, Valognes D, Camps M, Chabert C, Gillieron C, Francon B, Perrin D, Leroy D, Gretener D, Nichols A, Vitte PA, Carboni S, Rommel C, Schwarz MK, Ruckle T (2006) J Med Chem 49:3857–3871
Fischer PM (2008) Biotechnol J 3:452–470
Seifert MH, Lang M (2008) Mini-Rev Med Chem 8:63–72
Chen X, Wilson LJ, Malaviya R, Argentieri RL, Yang SM (2008) J Med Chem 51:7015–7019
Truchon JF, Bayly CI (2007) J Chem Inf Model 47:488–508
Frédérick R, Denny WA (2008) J Chem Inf Model 48:629–638
RCSB Protein Data Bank. www.pdb.org. Accessed 6 Aug 2009
Frédérick R, Mawson C, Kendall JD, Chaussade C, Rewcastle GW, Shepherd PR, Denny WA (2009) Bioorg Med Chem Lett 19:5842–5847
Gramatica P (2007) QSAR Comb Sci 26:694–701
Parker CN, Bajorath J (2006) QSAR Comb Sci 25:1153–1161
Han LY, Ma XH, Lin HH, Jia J, Zhu F, Xue Y, Li ZR, Cao ZW, Ji ZL, Chen YZ (2008) J Mol Graphics Model 26:1276–1286
Yap CW, Chen YZ (2005) J Chem Inf Model 45:982–992
Lau QP, Wynne H, Mong Li L, Ying M, Liang C (2007) 19th IEEE International Conference on tools with artificial intelligence. ICTAI 1:350–357
Xue Y, Yap CW, Sun LZ, Cao ZW, Wang JF, Chen YZ (2004) J Chem Inf Comput Sci 44:1497–1505
Ma XH, Wang R, Yang SY, Li ZR, Xue Y, Wei YC, Low BC, Chen YZ (2008) J Chem Inf Model 48:1227–1237
Schierz A (2009) Journal of Cheminformatics 1:21
McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) J Med Chem 45:1712–1722
Shoichet BK (2004) Nature 432:862–865
Liew CY, Ma XH, Liu X, Yap CW (2009) J Chem Inf Model 49:877–885
Xue Y, Li ZR, Yap CW, Sun LZ, Chen X, Chen YZ (2004) J Chem Inf Comput Sci 44:1630–1638
CambridgeSoft Desktop Software–ChemDraw (Windows/Mac). http://www.cambridgesoft.com/. Accessed 6 Aug 2009
CORINA: Generation of 3D coordinates. http://www.molecular-networks.com/software/corina/index.html. Accessed 6 Aug 2009
MODEL reference manual. http://jing.cz3.nus.edu.sg/model/. Accessed Aug 6, 2009
Perez JJ (2005) Chem Soc Rev 34:143–152
Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) KDD ‘06: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining 935–940
Tan P-N, Steinbach M, Kumar V (2005) Introduction to data mining. Addison Wesley
Webb GI, Boughton JR, Wang Z (2005) MLear 58:5–24
Vapnik V (1995) The nature of statistical learning theory. Springer, New York, London
Czermiński R, Yasri A, Hartsough D (2001) Quant Struct-Act Relat 20:227–240
Trotter M, Buxton B, Holden SB (2001) Measurement and Control 34:235–239
Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) ATLA Altern Lab Anim 33:445–459
Tropsha A, Gramatica P, Gombar Vijay K (2003) QSAR Comb Sci 22:69–77
Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Bioinformatics 16:412–424
Matthews BW (1975) Biochim Biophys Acta 405:442–451
Yap CW, Xue Y, Li H, Li ZR, Ung CY, Han LY, Zheng CJ, Cao ZW, Chen YZ (2006) Mini-Rev Med Chem 6:449–459
Acknowledgments
Our appreciation to Professor Chen Yu Zong (Bioinformatics and Drug Design Group, National University of Singapore) for his valuable discussions.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Liew, C.Y., Ma, X.H. & Yap, C.W. Consensus model for identification of novel PI3K inhibitors in large chemical library. J Comput Aided Mol Des 24, 131–141 (2010). https://doi.org/10.1007/s10822-010-9321-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-010-9321-0