Skip to main content
Log in

Docking study of the precursor peptide of matoparan onto its putative processing enzyme, dipeptidyl peptidase IV: a revisit to molecular ticketing

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Stepwise-cleavage process of promastoparans to reach maturity was investigated theoretically by combining ab initio folding and unbounded docking. The comparison between the structures of the promastoparans both before and after docking were examined along with the hydrogen bonding interaction pattern between the dipetidyl peptidase IV (DPPIV) and promastoparans to reveal how the endpoint of this stepwise cleavage is recognized among these promastoparans with highly resemble amino acid sequences. The current approach of folding and docking study provides structural insight on the stepwise cleavage process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hirai Y, Yasuhara T, Yoshida H, Nakajima T, Fujino M et al (1979) A new mast cell degranulating peptide “mastoparan” in the venom of Vespula lewisii. Chem Pharm Bull (Tokyo) 27:3

    Google Scholar 

  2. Yokokawa N, Komatsu M, Takeda T, Aizawa T, Tamada T (1989) Mastoparan, a wasp venom, stimulates insulin release by pancreatic islets through pertussis toxin sensitive GTP-binding protein. Biochem Biophys Res Commun 158:712–716

    Article  CAS  Google Scholar 

  3. Hirata Y, Atsumi M, Ohizumi Y, Nakahata N (2003) Mastoparan binds to glycogen phosphorylase to regulate sarcoplasmic reticular Ca2+ release in skeletal muscle. Biochem J 371:81–88

    Article  CAS  Google Scholar 

  4. Higashijima T, Uzu S, Nakajima T, Ross EM (1988) Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem 263:6491–6494

    CAS  Google Scholar 

  5. Higashijima T, Burnier J, Ross EM (1990) Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem 265:14176–14186

    CAS  Google Scholar 

  6. Gil J, Higgins T, Rozengurt E (1991) Mastoparan, a novel mitogen for Swiss 3T3 cells, stimulates pertussis toxin-sensitive arachidonic acid release without inositol phosphate accumulation. J Cell Biol 113:943–950

    Article  CAS  Google Scholar 

  7. Chahdi A, Choi WS, Kim YM, Beaven MA (2003) Mastoparan selectively activates Phospholipase D2 in cell membranes. J Biol Chem 278:12039–12045

    Article  CAS  Google Scholar 

  8. Lee VSY, Tu WC, Jinn TR, Peng CC, Lin LJ et al (2007) Molecular cloning of the precursor polypeptide of mastoparan B and its putative processing enzyme, dipeptidyl peptidase IV, from the black-bellied hornet, Vespa basalis. Insect Mol Biol 16:231–237

    Article  CAS  Google Scholar 

  9. Xu X, Yang H, Yu H, Li J, Lai R (2006) The mastoparanogen from wasp. Peptides 27:3053–3057

    Article  CAS  Google Scholar 

  10. Habermann E (1972) Bee and wasp venoms. Science 177:314–322

    Article  CAS  Google Scholar 

  11. Kreil G, Haiml L, Suchanek G (1980) Stepwise cleavage of the pro part of promelittin by dipeptidylpeptidase IV. Evidence for a new type of precursor–product conversion. Eur J Biochem 111:49–58

    Article  CAS  Google Scholar 

  12. Suchanek G, Kreil G, Hermodson MA (1978) Amino acid sequence of honeybee prepromelittin synthesized in vitro. Proc Natl Acad Sci USA 75:701–704

    Article  CAS  Google Scholar 

  13. Boman HC, Boman IA, Andreu D, Li ZQ, Merrifield RB et al (1989) Chemical synthesis and enzymic processing of precursor forms of cecropins A and B. J Biol Chem 264:5852–5860

    CAS  Google Scholar 

  14. Gibson BW, Poulter L, Williams DH, Maggio JE (1986) Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis. J Biol Chem 261:5341–5349

    CAS  Google Scholar 

  15. Julius D, Blair L, Brake A, Sprague G, Thorner J (1983) Yeast [alpha] factor is processed from a larger precursor polypeptide: The essential role of a membrane-bound dipeptidyl aminopeptidase. Cell 32:839–852

    Article  CAS  Google Scholar 

  16. Richter K, Egger R, Kreil G (1986) Sequence of preprocaerulein cDNAs cloned from skin of Xenopus laevis. A small family of precursors containin one, three, or four copies of the final product. J Biol Chem 261:3676–3680

    CAS  Google Scholar 

  17. Kreil G (1990) Processing of precursors by dipeptidylaminopeptidases: a case of molecular ticketing. Trends Biochem Sci 15:23–26

    Article  CAS  Google Scholar 

  18. Lambeir A-M, Durinx C, Scharpe S, De Meester I (2003) Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40: 209–294

    Article  CAS  Google Scholar 

  19. Mentlein R (1999) Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept 85:9–24

    Article  CAS  Google Scholar 

  20. McDonald J (1985) An overview of protease specificity and catalytic mechanisms: aspects related to nomenclature and classification. Histochem J 17:773–785

    Article  CAS  Google Scholar 

  21. Gorrell MD (2005) Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci 108:277–292

    Article  CAS  Google Scholar 

  22. Kikkawa F, Kajiyama H, Shibata K, Ino K, Nomura S et al (2005) Dipeptidyl peptidase IV in tumor progression. Biochim Biophys Acta (BBA)–Proteins & Proteomics 1751:45–51

    Article  CAS  Google Scholar 

  23. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705

    Article  CAS  Google Scholar 

  24. Idris I, Donnelly R (2007) Dipeptidyl peptidase-IV inhibitors: a major new class of oral antidiabetic drug. Diabetes Obes Metab 9:153–165

    Article  CAS  Google Scholar 

  25. McIntosh CHS, Demuth H-U, Kim S-J, Pospisilik JA, Pederson RA (2006) Applications of dipeptidyl peptidase IV inhibitors in diabetes mellitus. Int J Biochem Cell Biol 38:860–872

    Article  CAS  Google Scholar 

  26. Aertgeerts K, Ye S, Tennant MG, Kraus ML, Rogers J et al (2004) Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci 13:412–421

    Article  CAS  Google Scholar 

  27. Engel M, Hoffmann T, Wagner L, Wermann M, Heiser U et al (2003) The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci 100:5063–5068

    Article  CAS  Google Scholar 

  28. Hiramatsu H, Kyono K, Higashiyama Y, Fukushima C, Shima H et al (2003) The structure and function of human dipeptidyl peptidase IV, possessing a unique eight-bladed [beta]-propeller fold. Biochem Biophys Res Commun 302:849–854

    Article  CAS  Google Scholar 

  29. Oefner C, D’Arcy A, Mac Sweeney A, Pierau S, Gardiner R et al (2003) High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with 1-[({2-[(5-iodopyridin-2-yl)amino]-ethyl}amino)-acetyl]-2-cyano-(S)-pyrrolidine. Acta Crystallogr D 59:1206–1212

    Article  Google Scholar 

  30. Hori Y, Demura M, Iwadate M, Ulrich AS, Niidome T et al (2001) Interaction of mastoparan with membranes studied by 1H-NMR spectroscopy in detergent micelles and by solid-state 2H-NMR and 15 N-NMR spectroscopy in oriented lipid bilayers. Eur J Biochem 268:302–309

    Article  CAS  Google Scholar 

  31. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  32. Swendsen RH, Wang J-S (1986) Replica monte carlo simulation of spin-glasses. Phys Rev Lett 57:2607

    Article  Google Scholar 

  33. Case DA, Darden TA, Cheatham TE I, Simmerling CL, Wang J, et al. (2006) AMBER9 University of California, San Francisco

  34. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Struct Funct Bioinform 55:383–394

    Article  CAS  Google Scholar 

  35. Snow CD, Nguyen H, Pande VS, Gruebele M (2002) Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420:102–106

    Article  CAS  Google Scholar 

  36. Palmer BJ (1993) Direct application of shake to the velocity verlet algorithm. J Comput Phys 104:470–472

    Article  Google Scholar 

  37. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF et al (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240

    Article  CAS  Google Scholar 

  38. Shao J, Tanner SW, Thompson N, Cheatham TE (2007) III. Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput 3:2312–2334

    Article  CAS  Google Scholar 

  39. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  40. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87

    Article  CAS  Google Scholar 

  41. Kabsch W, Sander C (1983) Secondary structure definition by the program DSSP. Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  42. Liu S, Zhang C, Zhou H, Zhou Y (2004) A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins 56:93–101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Center for High-Performance Computing in Taiwan are acknowledged for providing the computational resources. SJ appreciate financial support from Korea Research Foundation grant no. C00369 (102969). FYL appreciate National Science Council, Taiwan for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Yin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, S., Chung, TY., Shin, J. et al. Docking study of the precursor peptide of matoparan onto its putative processing enzyme, dipeptidyl peptidase IV: a revisit to molecular ticketing. J Comput Aided Mol Des 24, 213–224 (2010). https://doi.org/10.1007/s10822-010-9327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9327-7

Keywords

Navigation