Skip to main content

Advertisement

Log in

Warfarin: history, tautomerism and activity

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The anticoagulant drug warfarin, normally administered as the racemate, can exist in solution in potentially as many as 40 topologically distinct tautomeric forms. Only 11 of these forms for each enantiomer can be distinguished by selected computational software commonly used to estimate octanol–water partition coefficients and/or ionization constants. The history of studies on warfarin tautomerism is reviewed, along with the implications of tautomerism to its biological properties (activity, protein binding and metabolism) and chemical properties (log P, log D, pK a). Experimental approaches to assessing warfarin tautomerism and computational results for different tautomeric forms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Lamb E (2009) Top 200 prescription drugs of 2008. Pharmacy Times, Plainsboro. http://www.pharmacytimes.com/issue/pharmacy/2009/2009-05/RxFocusTop200Drugs-0509. Accessed 08 Mar 2010

  2. Ikawa M, Stahman MA, Link KP (1944) 4-Hydroxycoumarins. V. Condensation of α, β-unsaturated ketones with 4-hydroxycoumarin. J Am Chem Soc 66:902–906

    Article  CAS  Google Scholar 

  3. Overman RS et al (1944) Studies on the hemorrhagic sweet clover disease: XIII. Anticoagulant activity and structure in the 4-hydroxycoumarin group. J Biol Chem 153:5–24

    CAS  Google Scholar 

  4. Schofield FW (1922) A brief account of a disease of cattle simulating haemorrhagic septicaemia, due to feeding sweet clover. Can Vet Rec 3:74–78

    Google Scholar 

  5. Roderick LM (1929) The pathology of sweet clover disease in cattle. J Amer Vet Med Ass 74:314–325

    Google Scholar 

  6. Burris RH (1994) Biographical memoir of Karl Paul link, vol 65. Biographical Memoirs, National Academy of Sciences, Washington, DC, pp 176–195

    Google Scholar 

  7. https://www.warf.org/about/index.jsp?cid=26&scid=34. Accessed Jan 2010

  8. Link KP (1959) The discovery of dicumarol and its sequels. Circulation 19:97–107

    CAS  Google Scholar 

  9. Campbell HA, Link KP (1941) Studies on the hemorrhagic sweet clover disease. IV. The isolation and crystallization of the hemorrhagic agent. J Biol Chem 138:21–33

    CAS  Google Scholar 

  10. Stahmann MA, Huebner CF, Link KP (1941) The hemorrhagic sweet clover disease. V. Identification and synthesis of the hemorrhagic agent. J BiolChem 138:513–527

    CAS  Google Scholar 

  11. Meyer OO (1959) Historical data regarding the experiences with coumarin anticoagulants at the University of Wisconsin Medical School. Circulation 19:114–117

    CAS  Google Scholar 

  12. Scheel LD (1949) Studies on the anticoagulant dicumarol and other 4-hydroxycoumarins. Sect, II, The anticoagulant activity and toxicity of 3-substituted-4-hydroxycoumarins. PhD Thesis, University of Wisconsin

  13. Wines M (2003) New study supports idea that Stalin was poisoned. The New York Times, 5 March

  14. Wu DL (1949) Masters Thesis, University of Wisconsin; Scheel LD, Wu D, Link KP (1949) Abstracts of papers, 116th meeting of the American Chemical Society

  15. Seidman M (1950) Studies on 3-(α-phenyl-β-acetylethyl)-4-hydroxycoumarin. PhD Thesis, University of Wisconsin

  16. Bravic G, Gaultier J, Hauw C (1973) Crystal structure of an antivitamin K, warfarin. C R Acad Sci Paris Ser C 277(22):1215–1218

    CAS  Google Scholar 

  17. Valente EJ, Trager WF, Jensen LH (1975) Crystal and molecular structure and absolute configuration of (-)-(S)-warfarin. Acta Cryst B B31(4):954–960

    Article  CAS  Google Scholar 

  18. Halland N, Hansen T, Jørgensen KA (2003) Organocatalytic asymmetric Michael reaction of cyclic 1, 3-dicarbonyl compounds and alpha, beta-unsaturated ketones—a highly atom-economic catalytic one-step formation of optically active warfarin anticoagulant. Angew Chem Int Ed Engl 42(40):4955–4957

    Article  CAS  Google Scholar 

  19. Shahzadi S, Ali S, Asif I, Ashraf R, Jin G-X (2006) The mechanism and crystal structure of 2-methoxy-2-methyl-4-phenyl-3, 4, 4a, 10b-tetrahydro-2H, 5H-pyrano[3, 2-c]chromen-5-one. Acetal of warfarin acid. Turkish J Chem 30(6):703–709

    CAS  Google Scholar 

  20. Porter WR (1976) Synthesis, structure in solution and stereochemical aspects of the microsomal metabolism of warfarin and phenprocoumon. PhD Thesis, University of Washington

  21. Link KP (1957) Warfarin-alkali metal derivatives and processes of preparing the same. US patent 2777859

  22. Schroeder CH, Link KP (1963) Warfarin sodium. US patent 3077481; Weiner N, Park R, Johnson M, Schoeder CH, Link KP (1966) Preparation of crystalline warfarin sodium-isopropyl alcohol complex. US patent 3246013

  23. Hiskey CF, Melnitchenko V (1965) Clathrates of sodium warfarin. J Pharm Sci 54(9):1298–1302

    Article  CAS  Google Scholar 

  24. Sheth AR, Young VG Jr, Grant DJW (2002) Warfarin sodium 2-propanol solvate. Acta Cryst E58:m197–m199

    CAS  Google Scholar 

  25. Sheth AR, Brennessel WW, Young VG Jr, Muller FX, Grant DJW (2004) Solid-state properties of warfarin sodium 2-propanol solvate. J Pharm Sci 93(11):2669–2680

    Article  CAS  Google Scholar 

  26. Huebner CF, Link KP (1945) 4-hydroxycoumarin. VII. Reactions of 4-hydroxycoumarin with cationoid reagents. J Amer Chem Soc 67:99–102

    Article  CAS  Google Scholar 

  27. Arndt F, Loewe L, Un R, Ayca E (1951) Coumarindiol and coumarin-chromone tautomerism. Chem Ber 84:319–329

    Article  CAS  Google Scholar 

  28. Klosa J (1953) Possibility of tautomeric forms of 4-hydroxycoumarin. Arch Pharm 286:37–43

    Article  CAS  Google Scholar 

  29. Chmielewska I, Cieslak J (1958) Vitamins and antivitamins K: tautomerism of dicoumarol. Tetrahedron 4:135–146

    Article  CAS  Google Scholar 

  30. Jachymczyk W, Cieslak J, Chmielewska I (1960) Tautomerism of dicoumarol. Three isomeric methyl ethyl ethers of dicoumarol. Rocz Chem 34:925–930

    CAS  Google Scholar 

  31. Knobloch E, Kakac B, Macha F (1952) Anticoagulants. XVIII. A study of the tautomeric equilibria of effective anticoagulant derivatives of 4-hydroxycoumarin. Chem Listy 46:416–419

    CAS  Google Scholar 

  32. Chmielewska J, Ciecierska D (1952) K vitamins and antivitamins. V. Ultraviolet absorption spectra of biologically active derivatives of 4-hydroxycoumarin. Przemysl Chem 31:253–256

    CAS  Google Scholar 

  33. Dezelic M, Trkovik M, Zovko M (1963) Absorption spectra of coumarins. Glasnik Hemicara Techol Bosne Hercegovina 12:17–44

    CAS  Google Scholar 

  34. Perel’son ME, Sheinker YuN (1966) Spectra and structure of hydroxycoumarin and hydroxyfurocoumarin salts. Zh Prikl Spektosk 5(1):104–110

    Google Scholar 

  35. Khaikin MS, Rakova NF (1968) Ultraviolet spectra of some 6, 7- and 7, 8-dihydroxycoumarins. Zh Prikl Spektrosk 8(6):1063–1066

    CAS  Google Scholar 

  36. Masrani KV, Rama HS, Bafna SK (1974) Ultaviolet absorption spectra: substituted coumarins. J Appl Chem Biotechnol 24(6):331–341

    Article  CAS  Google Scholar 

  37. Knobloch E, Prochzka Z (1953) Studies on anticoagulants. XXV. Infrared spectra of some derivatives of 4-hydroxycoumarin and chromone. Chem Listy 47:1285–1292

    CAS  Google Scholar 

  38. Abramovich RA, Gear JR (1958) Unsymmetrically substituted 3, 3′-methylene bridged 2, 2′-dihydroxychromones. Can J Chem 36:1501–1510

    Article  Google Scholar 

  39. Farmer VC (1959) Spectra and structure of 4-hydroxycoumarins. Spectrochim Acta 10:870–882

    Article  Google Scholar 

  40. Hutchinson DW, Tomlinson JA (1969) Structure of dicumarol and related compounds. Tetrahedron 25(12):2531–2537

    Article  CAS  Google Scholar 

  41. Gaultier J, Hauw C (1965) Structure of an “antivitamin” K, 3-bromo-4-hydroxycoumarin monohydrate. Compt Rend 260(13(Groupe 8)):3666–3667; Gaultier J, Hauw C (1965) Crystalline and molecular structure of 3-bromo-4-hydroxycoumarin monohydrate. Acta Cryst 19(6):927–933

    Google Scholar 

  42. Gaultier J, Hauw C (1965) Crystal structure of monohydrated 4-hydroxycoumarin. Compt Rend 260(22(Groupe 8)):5787–5789; Gaultier J, Hauw C (1966) Structure of 4-hydroxycoumarin. Water of hydration and crystal cohesion. Acta Cryst20(5):646–651

    Google Scholar 

  43. Bravic G, Gaultier J, Hauw C (1968) Crystalline and molecular structure of dicoumarol [3, 3’-methylenebis(4-hydroxycoumarin)]. C R Acad Sci Paris 267(26):1790–1793

    CAS  Google Scholar 

  44. Bravic G, Gaultier J, Hauw C (1971) Crystalline and molecular structure of marcoumar. C R Acad Sci Paris 272(12):1112–1114

    CAS  Google Scholar 

  45. Alcock NW, Hough E (1972) The crystal and molecular structure of 3, 3′-methylene(bis-6-bromo-4-hydroxycoumarin): unusual molecular interactions. Act Cryst B28(6):1957–1960

    Article  Google Scholar 

  46. Bravic G, Gaultier J, Geoffre S, Hauw C (1974) Crystal structure of an antivitamin K. 3-(1’α-Naphthyl)-4-hydroxycoumarin. C R Acad Sci Paris C27B:601–603

    Google Scholar 

  47. Valente EJ, Trager WF, Lingafelter EC (1976) (–)-3-(1-Phenylpropyl)-4-hydroxycoumarin. Acta Cryst B32(1):277–279

    CAS  Google Scholar 

  48. Jones PR (1968) Ring-chain tautomerism. Chem Rev 63:461–487

    Article  CAS  Google Scholar 

  49. Kol’tsov AI, Kheifets GM (1971) Investigation of keto-enol tautomerism by nuclear magnetic resonance spectroscopy. Russ Chem Rev 40(9):773–788

    Article  Google Scholar 

  50. Schroeder CH, Titus ED, Link KP (1957) Synthetic approach to some 3-aralkyl-4-hydroxycoumarins. J Amer Chem Soc 79:3291–3292

    Article  CAS  Google Scholar 

  51. Pohl LR, Haddock R, Garland WA, Trager WF (1975) Synthesis and thin-layer chromatographic, ultraviolet and mass spectral properties of the anticoagulant phenprocoumon and its monohydroxylated derivatives. J Med Chem 18(5):513–519

    Article  CAS  Google Scholar 

  52. Chan KK, Lewis RJ, Trager WF (1972) Absolute configuration of the four warfarin alcohols. J Med Chem 15(12):1265–1270

    Article  CAS  Google Scholar 

  53. Robertson DN, Linl KP (1953) Studies of 4-hydroxycoumarins. XII. 3-Substitued-aminoethyl-4-hydroxycoumarin derivatives by the Mannich reaction. J Amer Chem Soc 75:1883–1885

    Article  CAS  Google Scholar 

  54. Sen K, Bagchi P (1959) Studies on the ultraviolet absorption spectra of coumarins and chromones. II. Hydroxy derivatives. J Org Chem 24:316–319

    Article  CAS  Google Scholar 

  55. French WN, Wehrli MI (1965) Identification and assay of some coumarin anticoagulants. Can Pharm J 98(5):174–179

    CAS  Google Scholar 

  56. Mendez J, Lojo MI (1968) Spectral analysis of coumarins. Microchem J 13(3):506–512

    Article  CAS  Google Scholar 

  57. Mehta MJ, Hegde RS, Bhatt RA, Patel DJ, Bafna SL (1969) Ultraviolet spectra: 4-hydroxycoumarins. J Appl Chem 19(1):29–30

    Article  CAS  Google Scholar 

  58. Knight AR, McIntyre JS (1968) Deuterated 4-hydroxycoumarin derivatives. Can J Chem 46(11):1949–1951

    Article  CAS  Google Scholar 

  59. Wheeler CR (1980) Warfarin and phenprocoumon as probes to distinguish inducible forms of cytochrome P-450. PhD Thesis, University of Washington

  60. Perel’son ME, Zvolinskii VP, Kagan GI, YuN Sheinker (1973) Investigation of the electronic spectra of a-pyrone derivatives by the Pariser-Parr-Pople method in the variable β approximation. Zh Struckt Khim 14(2):246–254

    Google Scholar 

  61. Perel’son ME, Sheinker YuN, Zaitsev BF, Pozdyshev VA (1964) Integrated intensities of the carbonyl bands of a number of pyrones and quinones. Izv Akad Nauk SSSR Ser Khim (5):804–808

  62. Perel’son ME, Sheinker YuN (1968) Structure of the alkali metal salts of hydroxycoumarins and hydroxyfurocoumarins and their MO LCAO calculation. Teor Eksp Khim 4(2):184–191

    Google Scholar 

  63. Ahuja VK, Kapoor KL, Ray NK (1973) Molecular orbital study of pyrones: part II—chromones. Indian J Chem 11(2):143–145

    CAS  Google Scholar 

  64. Ray NK, Ahuja VK (1973) Molecular orbital study of the photoreactivity of triplet coumarins. Photochem Photobiol 17(5):347–351

    Article  CAS  Google Scholar 

  65. Ahuja VK, Kapoor KL, Ray NK (1973) Molecular orbital study of pyrones: part III—coumarins. Indian J Chem 11(5):458–460

    CAS  Google Scholar 

  66. Linke HAB (1969) Infrared spectra of hydroxychromone. Absorption of the carbonyl valence vibration. Spectrochim Acta 25A(6):1067–1074

    Google Scholar 

  67. Porter WR, Kunze K, Valente EJ, Trager WF (1980) The synthesis of C-2 isotopically labeled optically pure warfarin and phenprocoumon. J Label Comp Radiopharm 17(6):763–773

    Article  CAS  Google Scholar 

  68. Obaseki AO, Porter WR, Trager WF (1982) 4-Hydroxycoumarin/2-hydroxychromone tautomerism: infrared spectra of 2-13C and 3-D labeled 4-hydroxycoumarin and its anion. J Heterocyclic Chem 19:385–390

    Google Scholar 

  69. Porter WR, Trager WF (1982) 4-Hydroxycoumarin/2-hydroxychromone tautomerism: Infrared spectra of 3-substituted-2–13C-4-hydroxycoumarins. J Heterocyclic Chem 19:475–480

    Article  CAS  Google Scholar 

  70. Chan KK, Giannini DD, Cain AH, Roberts JD, Porter WR, Trager WF (1977) Carbon-13 nuclear magnetic resonance studies of coumarin and related compounds. Tetrahedron 33:899–906

    Article  CAS  Google Scholar 

  71. Valente EJ, Lingafelter EC, Porter WR, Trager WF (1977) The structure of warfarin in solution. J Med Chem 20(11):1489–1493

    Article  CAS  Google Scholar 

  72. Valente EJ, Porter WR, Trager WF, (1978) Conformations of selected 3-substituted 4-hydroxycoumarins in solution by nuclear magnetic resonance. Warfarin and phenprocoumon. J Med Chem 21(2):231–234

    Google Scholar 

  73. Obaseki AO (1982) Improved synthesis, separation and quantitation of warfarin and its metabolites and their use in the study of the tautomerization of 4-hydroxycoumarins and the metabolism of warfarin. Chapter 2, PhD Thesis, University of Wisconsin

  74. Obaseki AO, Porter WR (1987) Structure of warfarin analogs in solution. Arch Pharm Chem Sci Ed 5:110–121

    Google Scholar 

  75. Heimark LD, Trager WF (1984) The preferred solution conformation of warfarin at the active site of cytochrome P-450 based on the CD spectra in octanol/water model system. J Med Chem 27:1092–1095

    Article  CAS  Google Scholar 

  76. Holbrook A, Pereira JA, Labiris R, Mcdonald H, Douketis JD, Crowther M, Wells PS (2005) Systematic overview of warfarin and its drug and food interactions. Arch Intern Med 165:1095–1106

    Article  CAS  Google Scholar 

  77. Mann KG (1999) Biochemistry and physiology of blood coagulation. Thromb Haemost 82(2):165–174

    CAS  Google Scholar 

  78. Garcia AA, Reitsma PH (2008) VOKORC1 and the vitamin K cycle. Vit Horm 78:23–33

    Article  CAS  Google Scholar 

  79. Tie J-K, Stafford DW (2008) Structure and function of vitamin K epoxide reductase. Vit Horm 78:103–130

    Article  CAS  Google Scholar 

  80. Wallin R, Wajih N, Hutson SM (2008) VKORC1: a warfarin-sensitive enzyme in vitamin K metabolism and biosynthesis of vitamin K-dependent blood coagulation factors. Vit Horm 78:227–246

    Article  CAS  Google Scholar 

  81. Thijssen HHW, Baars LGM, Vervoort-Peters HTM (1988) Vitamin K 2.3-epoxide reductase: the basis for steroselectivity of 4-hydroxycoumarin anticoagulant activity

  82. Fasco MJ, Principe LM, Walsh WA, Friedman PA (1983) Warfarin inihibition of vitamin K 2, 3-epoxide reductase in rat liver. Biochem 22:5655–5660

    Article  CAS  Google Scholar 

  83. Park BK (1988) Warafin: metabolismand mode of action. Biochem Pharmacol 37(1):19–27

    Article  CAS  Google Scholar 

  84. Gebauer M (2007) Synthesis and structure-activity relationships of novel warfarin derivatives

  85. He M, Korzekwa KR, Jones JP, Rettie AE, Trager WF (1999) Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch Biochem Biophys 372(1):16–28

    Article  CAS  Google Scholar 

  86. Porter RS, Sawyer WT, Lowenthal DT (1986) Warfarin. In: Evans WE, Schentag JJ, Jusko WJ (eds) Applied pharmacokinetics, 2nd edn. Applied Therapeutics, Spokane, pp 1057–1104

    Google Scholar 

  87. Larsen FG, Larsen CG, Jakobsen P, Brodersen R (1985) Interaction of warfarin with human serum albumin: a stoichiometric description. Mol Pharmacol 27:263–270

    CAS  Google Scholar 

  88. Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin: Anatomy of drug site I. J Biol Chem 276(25):22804–22809

    Article  CAS  Google Scholar 

  89. Kaminsky LS, Zhang Z-Y (1997) Human P450 metabolism of warfarin. Pharmacol Ther 73(1):67–74

    Article  CAS  Google Scholar 

  90. Black DJ, Kunze KL, Wienkers LC, Gidal BE, Seation TL, McDonnell AP, Evans SJ, Bauwens JE, Trager WF (1996) Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies. Drug Metab Dispos 24:414–421

    Google Scholar 

  91. Aquilante CL, Langaee TY, Lopez LM, Yarandi HN, Tromberg JS, Mohuczy D, Gaston KL, Waddell CD, Chirico MJ, Johnson JA (2006) Influence of coagulation factor, vitamin K epoxide reductase complex sububnit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements. Clin Pharmacol Thera 79(4):291–302

    Article  CAS  Google Scholar 

  92. Yin T, Miyata Y (2007) Warfarin dos and the pharmacogenomics of CYP2C9 and VKORC1—rationale and perspectives. Thromb Res 120:1–10

    Article  CAS  Google Scholar 

  93. Williams PA, Cosme J, Ward A, Angove HC, Vinkoviĉ DM, Jhotl H (2003) Crystal structure of human cytochrome P450 @C9 with bound warfarin. Nature 424(24):464–468

    Article  CAS  Google Scholar 

  94. Jones JP, He M, Trager WF, Rettie AE (1996) Three-dimensional quantitative structure-activity relationship for inhibitors of cytochrome P4502C9. Drug Metab Dispos 24(1):1–6

    CAS  Google Scholar 

  95. Haining RL, Jones JP, Henne KR, Fisher MB, Koop DR, Trager WF, Rettie AE (1999) Enzymic determinants of the substrate specificity of CYP2C9: Role of B’-C loop residues in providing the π-stacking anchor site for warfarin binding. Biochem 38(11):3285–3292

    Article  CAS  Google Scholar 

  96. Rao S, Aoyama R, Schrag M, Trager WF, Rettie A, Jones JP (2000) A refined 3-dimensional QSAR of cytochrome P450 2C9: computational predictions of drug interactions. J Med Chem 43(15):2789–2796

    Article  CAS  Google Scholar 

  97. Kazuya Y, Noriyuki Y, Hiroaki G, Hideki T, Shuichi H (2009) Structure-based CoMFA as a predictive model - CYP2C9 inhibitors as a test case. J Chem Info Modeling 49(4):853–864

    Article  CAS  Google Scholar 

  98. Robertson AO (1953) PhD Thesis, University of Wisconsin, Madison, WI

  99. Ross Montgomery E, Taylor S, Segretario J, Engler E, Sebastian D (1996) Development and validation of a reverse-phase liquid chromatographic method for analysis of aspirin and warfarin in a combinarion tablet formulation. J Pharm Biomed Anal 15:73–82

    Article  Google Scholar 

  100. Krishnamurthy K, Ramasivan T, Singh DP (1971) Rodents and their control. VII. Effect of impurities in warfarin on its acceptability and mortality to black rats (Rattus rattus). Bull Grain Technol 9(4):252–256

    Google Scholar 

  101. Norinder U, Österberg T (2000) The applicability of computational chemistry in the evaluation and prediction of drug transport properties. Perspec Drug Discov Design 19:1–18

    Article  CAS  Google Scholar 

  102. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J MedChem 43(20):3714–3717

    CAS  Google Scholar 

  103. Bravi G, Wikel JH (2000) Application of MS-WHIM descriptors: 3. Prediction of molecular properties. Quant Struct-Activ Relat 19(1):39–49

    Google Scholar 

  104. Emoto C, Murayama N, Rostami-Hodjegan A, Yamazaki H (2009) Utilization of estimated physicochemical properties as an integrated part of predicting hepatic clearance in the early drug-discovery stage: impact of plasma and microsomal binding. Xenobiotica 39(3):227–235

    Article  CAS  Google Scholar 

  105. Liao C, Nicklaus MC (2009) Comparison of nine programs predicting pKa values of pharmaceutical substances. J Chem Inf Model 49:2801–2812

    Article  CAS  Google Scholar 

  106. Box KJ, Völgyi G, Baka E, Stuart M, Takács-Nowák T, Comer JEA (2006) Equilibrium versus kinetic measurements of aqueous solubility, and the ability of compounds to supersaturate in solution—a validation study. J Pharm Sci 95(6):1298–1307

    Article  CAS  Google Scholar 

  107. Otagiri M, Fokkens JG, Hardee GE, Perrin JH (1978) The interaction of some coumarin anticoagulants with β-cyclodextrin in phosphate buffers. Pharm Acta Helv 53(8):241–247

    CAS  Google Scholar 

  108. Illum L, Bundgaard H, Davis SS (1983) A constant partition model for examining the sorption of drugs by plastic infusion bags. Int J Pharm 17:183–192

    Article  CAS  Google Scholar 

  109. Stella VJ, Mooney KG, Pipkin JD (1984) Dissolution and ionization of warfarin. J Pharm Sci 73(7):946–948

    Article  CAS  Google Scholar 

  110. Opong-Mensah K, Woller TW, Obaseki AO, Porter WR (1984) Chemical and statistical considerations in the determination of partition coefficients of weakly ionizable drugs and poisons. J Pharm Biomed Anal 2(3/4):381–394

    Article  CAS  Google Scholar 

  111. Walter K, Kurz H (1988) Binding of drugs to human skin: Influencing factors and the role of tissue lipids. J Pharm Pharmacol 40:689–693

    CAS  Google Scholar 

  112. Baars LGM, Schepers MT, Hermans JJR, Dahlmans HJJ, Thijssen HHW (1990) Enantioselective structure-pharmacokinetic relationships of ring substituted warfarin analogues in the rat. J Pharm Pharmacol 42:861–866

    CAS  Google Scholar 

  113. Ishihama Y, Oda Y, Asakaw N (1994) Microscale determination of dissociation constants of multivalent pharmaceuticals by capillary electrophoresis. J Pharm Sci 83(10):1500–1507

    Google Scholar 

  114. Ishihama Y, Oda Y, Asakaw N (2005) Review report for the active substance warfarin. ec.europa.eu/food/plant/protection/evaluation/existactive/warfarin_en.pdf Downloaded 25Jan2010

  115. Völgyi G, Ruiz R, Box K, Comer J, Bosch E, Takács-Novák K (2007) Anal Chim Acta 583:418–428

    Article  CAS  Google Scholar 

  116. Box K, Comer J, Gravestock T, Mole J (2009) Fast pK a screening using 3μL of 10 mM DMSO stock. Presented at: LogP2009—the 4th LogP symposium, Feb. 8–11, 2009, ETHZurich, Switzerland

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Porter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, W.R. Warfarin: history, tautomerism and activity. J Comput Aided Mol Des 24, 553–573 (2010). https://doi.org/10.1007/s10822-010-9335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9335-7

Keywords

Navigation