Skip to main content

Advertisement

Log in

Trainable structure–activity relationship model for virtual screening of CYP3A4 inhibition

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A new structure–activity relationship model predicting the probability for a compound to inhibit human cytochrome P450 3A4 has been developed using data for >800 compounds from various literature sources and tested on PubChem screening data. Novel GALAS (Global, Adjusted Locally According to Similarity) modeling methodology has been used, which is a combination of baseline global QSAR model and local similarity based corrections. GALAS modeling method allows forecasting the reliability of prediction thus defining the model applicability domain. For compounds within this domain the statistical results of the final model approach the data consistency between experimental data from literature and PubChem datasets with the overall accuracy of 89%. However, the original model is applicable only for less than a half of PubChem database. Since the similarity correction procedure of GALAS modeling method allows straightforward model training, the possibility to expand the applicability domain has been investigated. Experimental data from PubChem dataset served as an example of in-house high-throughput screening data. The model successfully adapted itself to both data classified using the same and different IC50 threshold compared with the training set. In addition, adjustment of the CYP3A4 inhibition model to compounds with a novel chemical scaffold has been demonstrated. The reported GALAS model is proposed as a useful tool for virtual screening of compounds for possible drug-drug interactions even prior to the actual synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wienkers LC, Heath TG (2005) Nat Rev Drug Discov 4:825–833

    Article  CAS  Google Scholar 

  2. Rendic S, Di Carlo FJ (1997) Drug Metab Rev 29:413–580

    Article  CAS  Google Scholar 

  3. Kerns E, Di L (2008) Drug-like properties: concepts, structure design and methods: from ADME to toxicity optimization. Academic Press, San Diego

    Google Scholar 

  4. Miller VP, Stresser DM, Blanchard AP, Turner S, Crespi CL (2000) Ann NY Acad Sci 919:26–32

    Article  CAS  Google Scholar 

  5. Cali JJ, Ma D, Sobol M, Simpson DJ, Frackman S, Good TD, Daily WJ, Liu D (2006) Expert Opin Drug Metab Toxicol 2:629–645

    Article  CAS  Google Scholar 

  6. Zlokarnik G, Grootenhuis PDJ, Watson JB (2005) Drug Discov Today 10:1443–1450

    Article  CAS  Google Scholar 

  7. Walsky RL, Obach RS (2004) Drug Metab Dispos 32:647–660

    Article  CAS  Google Scholar 

  8. Zuegge J, Fechner U, Roche O, Parrott N, Engkvist O, Schneider G (2002) Quant Struct Act Relat 21:249–256

    Article  CAS  Google Scholar 

  9. Ekins S, Berbaum J, Harrison RK (2003) Drug Metab Dispos 31:1077–1080

    Article  CAS  Google Scholar 

  10. Kriegl JM, Arnhold T, Beck B, Fox T (2005) J Comput Aided Mol Des 19:189–201

    Article  CAS  Google Scholar 

  11. Kriegl JM, Eriksson L, Arnhold T, Beck B, Johansson E, Fox T (2005) Eur J Pharm Sci 24:451–463

    Article  CAS  Google Scholar 

  12. Arimoto R, Prasad M, Gifford EM (2005) J Biomol Screen 10:197–205

    Article  CAS  Google Scholar 

  13. Mao B, Gozalbes R, Barbosa F, Migeon J, Merrick S, Kamm K, Wong E, Costales C, Shi W, Wu C, Froloff N (2006) J Chem Inf Model 46:2125–2134

    Article  CAS  Google Scholar 

  14. Jensen BF, Vind C, Padkjaer SB, Brockhoff PB, Refsgaard HHF (2007) J Med Chem 50:501–511

    Article  CAS  Google Scholar 

  15. Gleeson MP, Davis AM, Chohan KK, Paine SW, Boyer S, Gavaghan CL, Arnby CH, Kankkonen C, Albertson N (2007) J Comput Aided Mol Des 21:559–573

    Article  CAS  Google Scholar 

  16. Choi I, Kim SY, Kim H, Kang NS, Bae MA, Yoo S, Jung J, No KT (2009) Eur J Med Chem 44:2354–2360

    Article  CAS  Google Scholar 

  17. Weaver S, Gleeson MP (2008) J Mol Graph Model 26:1315–1326

    Article  CAS  Google Scholar 

  18. Ekins S, Bravi G, Binkley S, Gillespie JS, Ring BJ, Wikel JH, Wrighton SA (1999) J Pharmacol Exp Ther 290:429–438

    CAS  Google Scholar 

  19. Wang RW, Newton DJ, Liu N, Atkins WM, Lu AY (2000) Drug Metab Dispos 28:360–366

    CAS  Google Scholar 

  20. Lu P, Lin Y, Rodrigues AD, Rushmore TH, Baillie TA, Shou M (2001) Drug Metab Dispos 29:1473–1479

    CAS  Google Scholar 

  21. Ekroos M, Sjögren T (2006) Proc Natl Acad Sci USA 103:13682–13687

    Article  CAS  Google Scholar 

  22. Galetin A, Clarke SE, Houston JB (2003) Drug Metab Dispos 31:1108–1116

    Article  CAS  Google Scholar 

  23. Worth AP, Hartung T, Van Leeuwen CJ (2004) SAR QSAR Environ Res 15:345–358

    Article  CAS  Google Scholar 

  24. Sazonovas A, Japertas P, Didziapetris R (2010) SAR QSAR Environ Res 21:127–148

    Article  CAS  Google Scholar 

  25. Japertas P, Sazonovas A, Didziapetris R, Petrauskas A (2008) The 235th ACS National Meeting, New Orleans, LA

  26. Stresser DM, Blanchard AP, Turner SD, Erve JC, Dandeneau AA, Miller VP, Crespi CL (2000) Drug Metab Dispos 28:1440–1448

    CAS  Google Scholar 

  27. Nomeir AA, Ruegg C, Shoemaker M, Favreau LV, Palamanda JR, Silber P, Lin CC (2001) Drug Metab Dispos 29:748–753

    CAS  Google Scholar 

  28. The PubChem Project. http://pubchem.ncbi.nlm.nih.gov/. Accessed 10 Jun 2008

  29. Tetko IV (2002) J Chem Inf Comput Sci 42:717–728

    CAS  Google Scholar 

  30. Tetko IV (2002) Neur Proc Lett 16:187–199

    Article  Google Scholar 

  31. Efron B (1979) Ann Statist 7:1–26

    Article  Google Scholar 

  32. Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T (2000) Eur J Clin Pharmacol 55:843–852

    Article  CAS  Google Scholar 

  33. Fawcett T (2006) Patt Recog Lett 27:861–874

    Article  Google Scholar 

  34. Velaparthi U, Wittman M, Liu P, Carboni JM, Lee FY, Attar R, Balimane P, Clarke W, Sinz MW, Hurlburt W, Patel K, Discenza L, Kim S, Gottardis M, Greer A, Li A, Saulnier M, Yang Z, Zimmermann K, Trainor G, Vyas D (2008) J Med Chem 51:5897–5900

    Article  CAS  Google Scholar 

  35. Algorithm Builder. ACD/Labs Inc., Toronto, ON, Canada. http://www.acdlabs.com

  36. Japertas P, Didziapetris R, Petrauskas A (2002) Quant Struct Act Relat 21:23–37

    Article  CAS  Google Scholar 

  37. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org/

  38. Eng J (2006) ROC analysis: web-based calculator for ROC curves. http://www.jrocfit.org. Accessed 19 Jul 2010

  39. ADME Suite. ACD/Labs Inc., Toronto, ON, Canada. http://www.acdlabs.com

  40. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) J Biol Chem 279:38091–38094

    Article  CAS  Google Scholar 

  41. Korzekwa KR, Krishnamachary N, Shou M, Ogai A, Parise RA, Rettie AE, Gonzalez FJ, Tracy TS (1998) Biochemistry 37:4137–4147

    Article  CAS  Google Scholar 

  42. Gleeson MP (2008) J Med Chem 51:817–834

    Article  CAS  Google Scholar 

  43. Monostory K, Vereczkey L, Lévai F, Szatmári I (1998) Br J Pharmacol 123:605–610

    Article  CAS  Google Scholar 

  44. Moon Y, Kim SY, Ji HY, Kim YK, Chae HJ, Chae SW, Lee HS (2007) Xenobiotica 37:246–259

    Article  CAS  Google Scholar 

  45. Gleeson P, Bravi G, Modi S, Lowe D (2009) Bioorg Med Chem 17:5906–5919

    Article  CAS  Google Scholar 

  46. Ishigami M, Honda T, Takasaki W, Ikeda T, Komai T, Ito K, Sugiyama Y (2001) Drug Metab Dispos 29:282–288

    CAS  Google Scholar 

  47. Tsukamoto I, Koshio H, Kuramochi T, Saitoh C, Yanai-Inamura H, Kitada-Nozawa C, Yamamoto E, Yatsu T, Shimada Y, Sakamoto S, Tsukamoto S (2009) Bioorg Med Chem 17:3130–3141

    Article  CAS  Google Scholar 

  48. Ortiz de Montellano PR (1995) In: Cytochrome P450: structure, mechanism and biochemistry. Plenum Press, New York

    Google Scholar 

  49. Testa B (1995) The metabolism of drugs and other xenobiotics: biochemistry of redox reactions. Academic Press, San Diego

    Google Scholar 

  50. Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, McLeod HL (2005) Clin Pharmacokinet 44:279–304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justas Dapkunas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didziapetris, R., Dapkunas, J., Sazonovas, A. et al. Trainable structure–activity relationship model for virtual screening of CYP3A4 inhibition. J Comput Aided Mol Des 24, 891–906 (2010). https://doi.org/10.1007/s10822-010-9381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9381-1

Keywords

Navigation