Skip to main content
Log in

Prodrugs of aza nucleosides based on proton transfer reaction

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

DFT calculation results for intramolecular proton transfer reactions in Kirby’s enzyme models 17 reveal that the reaction rate is quite responsive to geometric disposition, especially to distance between the two reactive centers, r GM, and the angle of attack, α (the hydrogen bonding angle). Hence, the study on the systems reported herein could provide a good basis for designing aza nucleoside prodrug systems that are less hydrophilic than their parental drugs and can be used, in different dosage forms, to release the parent drug in a controlled manner. For example, based on the calculated log EM, the cleavage process for prodrug 1ProD is predicted to be about 1010 times faster than that for prodrug 7ProD and about 104 times faster than prodrug 3ProD: rate 1ProD  > rate 3ProD  > rate 7ProD . Hence, the rate by which the prodrug releases the aza nucleoside drug can be determined according to the structural features of the linker (Kirby’s enzyme model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2

Similar content being viewed by others

References

  1. The Leukemia & Lymphoma Society (2001) Myelodysplastic syndrome. White Plains, NY

  2. Wijermans P, Lübbert M, Verhoef G et al (2000) Low-dose 5-aza-2’-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 18:956–962

    CAS  Google Scholar 

  3. Silverman LR, Demakos EP, Peterson BL et al (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20:2429–2440

    Article  CAS  Google Scholar 

  4. Silverman LR, McKenzie DR, Peterson BL et al () Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 2006(24):3895–3903

    Article  Google Scholar 

  5. Kantarjian H, Issa JP, Rosenfeld CS et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803

    Article  CAS  Google Scholar 

  6. Blum W, Klisovic RB, Hackanson B et al (2007) Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25:3884–3891

    Article  CAS  Google Scholar 

  7. Testa B, Mayer J (2003) Hydrolysis in drug and prodrug metabolism—chemistry, biochemistry and enzymology. Wiley, Zurich

    Book  Google Scholar 

  8. Testa B, Mayer JM (2001) Concepts in prodrug design to overcome pharmacokinetic problems. In: Testa B, van de Waterbeemd H, Folkers G, Guy R (eds) Pharmacokinetic optimization in drug research: biological, physiochemical and computational strategies. Wiley, Zurich, pp 85–95

    Chapter  Google Scholar 

  9. Wang W, Jiang J, Ballard CE, Wang B (1999) Prodrug approaches in the improved delivery of peptide drugs. Curr Pharm Design 5:265–287

    CAS  Google Scholar 

  10. Karaman R (2008) Analysis of Menger’s spatiotemporal hypothesis. Tet Lett 49:5998–6002

    Article  CAS  Google Scholar 

  11. Karaman R (2009) Reevaluation of Bruice’s proximity orientation. Tet Lett 50:452–456

    Article  CAS  Google Scholar 

  12. Karaman R (2009) A new mathematical equation relating activation energy to bond angle and distance: a key for understanding the role of acceleration in the lactonization of the trimethyl lock system. Bioorg Chem 37(1):11–25

    Article  CAS  Google Scholar 

  13. Karaman R (2009) Accelerations in the lactonization of trimethyl lock systems is due to proximity orientation and not to strain effects. Res Lett Org Chem. doi: 10.1155/2009/240253

  14. Karaman R (2009) The effective molarity (EM) puzzle in proton transfer reactions. Bioorg Chem 37:106–110

    Article  CAS  Google Scholar 

  15. Karaman R (2009) Cleavage of Menger’s aliphatic amide: a model for peptidase enzyme solely explained by proximity orientation in intramolecular proton transfer. J Mol Struct (Theochem) 910:27–33

    Article  CAS  Google Scholar 

  16. Karaman R (2009) The gem-disubstituent effect-computational study that exposes the relevance of existing theoretical models. Tet Lett 50:6083–6087

    Article  CAS  Google Scholar 

  17. Karaman R (2010) Affects of substitution on the effective molarity (EM) for five membered ring-closure reactions- a computational approach. J Mol Struct (Theochem) 939:69–74

    Article  CAS  Google Scholar 

  18. Karaman R (2009) Analyzing Kirby’s amine olefin—a model for amino-acid ammonia lyases. Tet Lett 50:7304–7309

    Article  CAS  Google Scholar 

  19. Karaman R (2010) The effective molarity (EM) puzzle in intramolecular ring-closing reactions. J Mol Struct (Theochem) 940:70–75

    Article  CAS  Google Scholar 

  20. Karaman R (2010) The efficiency of proton transfer in Kirby’s enzyme model, a computational approach. Tet Lett 51:2130–2135

    Article  CAS  Google Scholar 

  21. Karaman R (2010) A general equation correlating intramolecular rates with “attack” parameters distance and angle. Tet Lett 51:5185–5190

    Article  CAS  Google Scholar 

  22. Karaman R (2010) The effective molarity (EM)—a computational approach. Bioorg Chem 38:165–172

    Article  CAS  Google Scholar 

  23. Karaman R (2010) Proximity vs. strain in ring-closing reactions of bifunctional chain molecules—a computational approach. J Mol Phys 108:1723–1730

    Article  CAS  Google Scholar 

  24. Milstien S, Cohen LA (1970) Concurrent general-acid and general-base catalysis of esterification. J Am Chem Soc 92:4377–4382

    Article  CAS  Google Scholar 

  25. Milstien S, Cohen LA (1970) Rate acceleration by stereo population control: models for enzyme action. Proc Natl Acad Sci U S A 67:1143–1147

    Article  CAS  Google Scholar 

  26. Milstien S, Cohen LA (1972) Stereopopulation control I. Rate enhancement in the lactonizations of o-hydroxyhydrocinnamic acids. J Am Chem Soc 94:9158–9165

    Article  CAS  Google Scholar 

  27. Winans RE, Wilcox CF Jr (1976) Comparison of stereopopulation control with conventional steric effects in lactonization of hydrocoumarinic acids. J Am Chem Soc 98:4281–4285

    Article  CAS  Google Scholar 

  28. Dorigo AE, Houk KN (1987) The origin of proximity effects on reactivity: a modified MM2 model for the rates of acid-catalyzed lactonizations of hydroxy acids. J Am Chem Soc 109:3698–3708

    Article  CAS  Google Scholar 

  29. Houk KN, Tucker JA, Dorigo AE (1990) Quantitative modeling of proximity effects on organic reactivity. Acc Chem Res 23:107–113

    Article  CAS  Google Scholar 

  30. Menger FM (1985) On the source of intramolecular and enzymatic reactivity. Acc Chem Res 18:128–134

    Article  CAS  Google Scholar 

  31. Menger FM, Chow JF, Kaiserman H, Vasquez PC (1983) Directionality of proton transfer in solution: three systems of known angularity. J Am Chem Soc 105:4996–5002

    Article  CAS  Google Scholar 

  32. Menger FM (1983) Directionality of organic reactions in solution. Tetrahedron 39:1013–1040

    Article  CAS  Google Scholar 

  33. Menger FM, Grossman J, Liotta DC (1983) Transition-state pliability in nitrogen-to-nitrogen proton transfer. J Org Chem 48:905–907

    Article  CAS  Google Scholar 

  34. Menger FM, Galloway AL, Musaev DG (2003) Relationship between rate and distance. Chem Comm 2370–2371

  35. Menger FM (2005) An alternative view of enzyme catalysis. Pure Appl Chem 77:1873–1886

    Article  CAS  Google Scholar 

  36. Bruice TC, Pandit UK (1960) The effect of geminal substitution ring size and rotamer distribution on the intramolecular nucleophilic catalysis of the hydrolysis of monophenyl esters of dibasic acids and the solvolysis of the intermediate anhydrides. J Am Chem Soc 82:5858–5865

    Article  CAS  Google Scholar 

  37. Bruice TC, Pandit UK (1960) Intramolecular models depicting the kinetic importance of “Fit” in enzymatic catalysis. Proc Natl Acad Sci U S A 46:402–404

    Article  CAS  Google Scholar 

  38. Brown RF, Van Gulick NM (1956) The geminal alkyl effect on the rates of ring closure of bromobutylamines. J Org Chem 21:1046–1049

    Article  CAS  Google Scholar 

  39. Galli C, Mandolini L (2000) The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur J Org Chem 3117–3125, and references therein

  40. Kirby AJ (1997) Efficiency of proton transfer catalysis in models and enzymes. Acc Chem Res 30:290–296

    Article  CAS  Google Scholar 

  41. Brown CJ, Kirby AJ (1997) Efficiency of proton transfer catalysis: intramolecular general acid catalysis of the hydrolysis of dialkyl acetals of benzaldehyde. J Chem Soc Perkin Trans 2:1081–1093

    Google Scholar 

  42. Craze GA, Kirby AJ (1974) The role of carboxy-group in intramolecular catalysis of acetal hydrolysis: the hydrolysis of substituted 2-methoxymethoxybenzoic acids. J Chem Soc Perkin Trans 2:61–66

    Google Scholar 

  43. Barber SE, Dean KES, Kirby AJ (1999) A mechanism for efficient proton-transfer catalysis: intramolecular general acid catalysis of the hydrolysis of 1-arylethyl ethers of salicylic acid. Can J Chem 77:792–801

    Article  CAS  Google Scholar 

  44. Asaad N, Davies JE, Hodgson DRW, Kirby AJ (2005) The search for efficient intramolecular proton transfer from carbon: the kinetically silent intramolecular general base-catalysed elimination reaction of o-phenyl 8-dimethylamino-1-naphthaldoximes. J Phys Org Chem 18:101–109

    Article  CAS  Google Scholar 

  45. Kirby AJ, Parkinson A (1994) Most efficient intramolecular general acid catalysis of acetal hydrolysis by the carboxyl group. J Chem Soc Chem Commun 707–708

  46. Kirby AJ, Lima MF, de Silva D, Roussev CD, Nome F (2006) Efficient intramolecular general acid catalysis of nucleophilic attack on a phosphodiester. J Am Chem Soc 128:16944–16952

    Article  CAS  Google Scholar 

  47. Hartwell E, Hodgson DRW, Kirby AJ (2000) Exploring the limits of efficiency of proton-transfer catalysis in models and enzymes. J Am Chem Soc 122:9326–9327

    Article  CAS  Google Scholar 

  48. Kirby AJ, Williams NH (1994) Efficient intramolecular general acid catalysis of enol ether hydrolysis: hydrogen-bonding stabilization of the transition state for proton transfer to carbon. J Chem Soc Perkin Trans 2:643–648

    Google Scholar 

  49. Kirby AJ, Williams NH (1991) Efficient intramolecular general acid catalysis of vinyl ether hydrolysis by the neighbouring carboxylic acid group. J Chem Soc Chem Commun 1643–1644

  50. http://w/w/w.gaussian.com

  51. Casewit CJ, Colwell KS, Rappé AK (1992) Application of a universal force field to main group compounds. J Am Chem Soc 114:10046–10053

    Article  CAS  Google Scholar 

  52. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  53. Murrell JN, Laidler KJ (1968) Symmetries of activated complexes. Trans Farad Soc 64:371–377

    Article  CAS  Google Scholar 

  54. Muller K (1980) Reaction paths on multidimensional energy hypersurfaces. Angew Chem Int Ed Eng 19:1–13

    Article  Google Scholar 

  55. Perrin DD, Dempsey B, Serjeant EP (1981) pKa prediction for organic acids and bases. Champan & Hall, London

    Google Scholar 

  56. The percentage of the ionized and unionized forms was calculated using Henderson-Hasselbach equation

  57. Kirby AJ (1980) Effective molarities for intramolecular reactions. Adv Phys Org Chem 17:183 and references therein

    Google Scholar 

Download references

Acknowledgments

The Karaman Co. and the German-Palestinian-Israeli fund agency are thanked for support of our computational facilities. Special thanks are given to Angi Karaman, Donia Karaman, Rowan Karaman and Nardene Karaman for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafik Karaman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaman, R. Prodrugs of aza nucleosides based on proton transfer reaction. J Comput Aided Mol Des 24, 961–970 (2010). https://doi.org/10.1007/s10822-010-9389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9389-6

Keywords

Navigation