Skip to main content
Log in

Selenoglycosides in silico: ab initio-derived reparameterization of MM4, conformational analysis using histo-blood group ABH antigens and lectin docking as indication for potential of bioactivity

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The identification of glycan epitopes such as the histo-blood group ABH determinants as docking sites for bacterial/viral infections and signals in growth regulation fuels the interest to develop non-hydrolysable mimetics for therapeutic applications. Inevitably, the required substitution of the linkage oxygen atom will alter the derivative’s topology. Our study addresses the question of the impact of substitution of oxygen by selenium. In order to characterize spatial parameters and flexibility of selenoglycosides, we first performed ab initio calculations on model compounds to refine the MM4 force field. The following application of the resulting MM4R version appears to reduce the difference to ab initio data when compared to using the MM4 estimator. Systematic conformational searches on the derivatives of histo-blood group ABH antigens revealed increased flexibility with acquisition of additional low-energy conformer(s), akin to the behavior of S-glycosides. Docking analysis using the Glide program for eight test cases indicated potential for bioactivity, giving further experimental investigation a clear direction to testing Se-glycosides as lectin ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gabius H-J (ed) (2009) The sugar code: fundamentals of glycosciences. Wiley, Weinheim

    Google Scholar 

  2. Gabius H-J (1988) Angew Chem 100:1321–1330 Gabius H-J (1988) Angew Chem Int Ed Engl 27:1267–1276

    Google Scholar 

  3. Gabius H-J (2008) Biochem Soc Transact 36:1491–1496

    Article  CAS  Google Scholar 

  4. Oscarson S (2009) The chemist’s way to synthesize glycosides. In: Gabius H-J (ed) The sugar code: fundamentals of glycosciences. Wiley, Weinheim, pp 31–51

    Google Scholar 

  5. Osborn HMI, Turkson A (2009) Sugars as pharmaceuticals. In: Gabius H-J (ed) The sugar code: fundamentals of glycosciences. Wiley, Weinheim, pp 469–483

    Google Scholar 

  6. Asensio J, Espinosa J, Dietrich H, Schmidt R, Martín-Lomas M, André S, Gabius H-J, Jiménez-Barbero J (1999) J Am Chem Soc 121:8995–9000

    Article  CAS  Google Scholar 

  7. Ahmad N, Gabius H-J, Kaltner H, André S, Kuwabara I, Liu F-T, Oscarson S, Norberg T, Brewer CF (2002) Can J Chem 80:1096–1104

    Article  CAS  Google Scholar 

  8. André S, Pei Z, Siebert H-C, Ramström O, Gabius H-J (2006) Bioorg Med Chem 14:6314–6326

    Article  Google Scholar 

  9. Strino F, Lii J-H, Gabius H-J, Nyholm P-G (2009) J Comput Aided Mol Des 23:845–852

    Article  CAS  Google Scholar 

  10. Buts L, Loris R, De Genst E, Oscarson S, Lahmann M, Messens J, Brosens E, Wyns L, De Greve H, Bouckaert J (2003) Acta Crystallogr D Biol Crystallogr 59:1012–1015

    Article  Google Scholar 

  11. Allinger NL, Chen K-H, Lii J-H, Durkin KA (2003) J Comput Chem 24:1447–1472

    Article  CAS  Google Scholar 

  12. Lii J-H, Chen K-H, Durkin KA, Allinger NL (2003) J Comput Chem 24:1473–1489

    Article  CAS  Google Scholar 

  13. Lii J-H, Chen K-H, Grindley TB, Allinger NL (2003) J Comput Chem 24:1490–1503

    Article  CAS  Google Scholar 

  14. Lii J-H, Chen K-H, Allinger NL (2003) J Comput Chem 24:1504–1513

    Article  CAS  Google Scholar 

  15. Lii J-H, Chen K-H, Johnson GP, French AD, Allinger NL (2005) Carbohydr Res 340:853–862

    Article  CAS  Google Scholar 

  16. Lii J-H, Chen K-H, Allinger NL (2004) J Phys Chem A 108:3006–3015

    Article  CAS  Google Scholar 

  17. Beecher JF (1966) J Mol Spectrosc 21:414–424

    Article  CAS  Google Scholar 

  18. Lii J-H, Ma B, Allinger NL (1999) J Comput Chem 20:1593–1603

    Article  CAS  Google Scholar 

  19. Strino F, Nahmany A, Rosén J, Kemp GJL, Sá-correia I, Nyholm P-G (2005) Carbohydr Res 340:1019–1024

    Article  CAS  Google Scholar 

  20. Nahmany A, Strino F, Rosén J, Kemp GJL, Nyholm P-G (2005) Carbohydr Res 340:1059–1064

    Article  CAS  Google Scholar 

  21. Lii J-H, Allinger NL (2008) J Phys Chem A 112:11903–11913

    Article  CAS  Google Scholar 

  22. Galanina OE, Kaltner H, Khraltsova LS, Bovin NV, Gabius H-J (1997) J Mol Recognit 10:139–147

    Article  CAS  Google Scholar 

  23. Jiménez M, André S, Barillari C, Romero A, Rognan D, Gabius H-J, Solís D (2008) FEBS Lett 582:2309–2312

    Article  Google Scholar 

  24. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  25. Stortz CA, Johnson GP, French AD, Csonka GI (2009) Carbohydr Res 344:2217–2228

    Article  CAS  Google Scholar 

  26. Heiden W, Moeckel G, Brickmann J (1993) J Comput Aided Mol Des 7:503–514

    Article  CAS  Google Scholar 

  27. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng Des Sel 8:127–134

    Article  CAS  Google Scholar 

  28. Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) Trends Biochem Sci 22:488–490

    Article  CAS  Google Scholar 

  29. Traar P, Belaj F, Francesconi KA (2004) Aust J Chem 57:1051–1053

    Article  CAS  Google Scholar 

  30. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  31. Higgins MA, Abbott DW, Boulanger MJ, Boraston AB (2009) J Mol Biol 388:299–309

    Article  CAS  Google Scholar 

  32. Walser PJ, Haebel PW, Künzler M, Sargent D, Kües U, Aebi M, Ban N (2004) Structure 12:689–702

    Article  CAS  Google Scholar 

  33. Gregg KJ, Finn R, Abbott DW, Boraston AB (2008) J Biol Chem 283:12604–12613

    Article  CAS  Google Scholar 

  34. Teneberg S, Alsén B, Ångström J, Winter HC, Goldstein IJ (2003) Glycobiology 13:479–486

    Article  CAS  Google Scholar 

  35. Blanchard B, Nurisso A, Hollville E, Tétaud C, Wiels J, Pokorná M, Wimmerová M, Varrot A, Imberty A (2008) J Mol Biol 383:837–853

    Article  CAS  Google Scholar 

  36. Ribeiro JP, André S, Cañada FJ, Gabius H-J, Butera AP, Alves RJ, Jiménez-Barbero J (2010) ChemMedChem 5:415–419

    Article  CAS  Google Scholar 

  37. Chen C-P, Song S-C, Gilboa-Garber N, Chang KSS, Wu AM (1998) Glycobiology 8:7–16

    Article  CAS  Google Scholar 

  38. Solís D, Romero A, Menéndez M, Jiménez-Barbero J (2009) Protein-carbohydrate interactions: basic concepts and methods for analysis. In: Gabius H-J (ed) The sugar code: fundamentals of glycosciences. Wiley, Weinheim, pp 233–245

    Google Scholar 

  39. Wu AM, Wu JH, Liu J-H, Singh T, André S, Kaltner H, Gabius H-J (2004) Biochimie 86:317–326

    Article  CAS  Google Scholar 

  40. Gabius H-J (2006) Crit Rev Immunol 26:43–79

    CAS  Google Scholar 

  41. Villalobo A, Nogales-González A, Gabius H-J (2006) Trends Glycosci Glycotechnol 18:1–37

    CAS  Google Scholar 

  42. Holgersson J, Gustafsson A, Gaunitz S (2009) Bacterial and viral lectins. In: Gabius H-J (ed) The sugar code: fundamentals of glycosciences. Wiley, Weinheim, pp 279–300

    Google Scholar 

  43. André S, Kaltner H, Furuike T, Nishimura S-I, Gabius H-J (2004) Bioconjug Chem 15:87–98

    Article  Google Scholar 

  44. André S, Sansone F, Kaltner H, Casnati A, Kopitz J, Gabius H-J, Ungaro R (2008) ChemBioChem 9:1649–1661

    Article  Google Scholar 

  45. Chabre YM, Roy R (2009) The chemist’s way to prepare multivalency. In: Gabius H-J (ed) The sugar code: fundamentals of glycosciences. Wiley, Weinheim, pp 53–70

    Google Scholar 

  46. Leyden R, Velasco-Torrijos T, André S, Gouin S, Gabius H-J, Murphy PV (2009) J Org Chem 74:9010–9026

    Article  CAS  Google Scholar 

  47. André S, Giguère D, Dam TK, Brewer CF, Gabius H-J, Roy R (2010) New J Chem 34:2229–2240

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Swedish Medical Research Council (K2000-03x-00006-36A), the research initiative LMUexcellent, an EC Marie Curie Research Training Network grant (MRTN-CT-2005-019561) and Biognos AB (Göteborg) is gratefully acknowledged. Also, access to the Linux cluster at the Institute of Biomedicine, Gothenburg University, Sweden is gratefully acknowledged. We are also grateful to the reviewers of the manuscript for their expert input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Georg Nyholm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2657 kb)

Supplementary material 2 (TXT 2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strino, F., Lii, JH., Koppisetty, C.A.K. et al. Selenoglycosides in silico: ab initio-derived reparameterization of MM4, conformational analysis using histo-blood group ABH antigens and lectin docking as indication for potential of bioactivity. J Comput Aided Mol Des 24, 1009–1021 (2010). https://doi.org/10.1007/s10822-010-9392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9392-y

Keywords

Navigation