Abstract
Using the kinases in the DUD dataset and an in-house HTS dataset from PI3K-γ, receptor-based virtual screening experiments were performed using Glide SP docking. While significant enrichments were observed for eight of the nine targets in the set, more detailed analyses highlighted that much of the early enrichment (10–80%) is the result of retrieval of a single cluster of active compounds. This biased retrieval was not necessarily due to early enrichment of the cluster containing the co-crystallized ligand. Virtual screening validation studies could thus benefit from including cluster-based analyses to assess enrichment of diverse chemotypes.




Similar content being viewed by others
References
Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35:D301–D303
Joseph-McCarthy D, Baber JC, Feyfant E, Thompson DC, Humblet C (2007) Lead optimization via high-throughput molecular docking. Curr Opin Drug Discov Dev 10(3):264–274
Cavasotto CN, Orry AJW (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 7(10):1006–1014
Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49(6):1455–1474
Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43(25):4759–4767
Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44(7):1035–1042
Schulz-Gasch T, Stahl M (2003) Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. J Mol Model 9(1):47–57
Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins Struct Funct Bioinf 57(2):225–242
Perola E, Walters WP, Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins Struct Funct Bioinf 56(2):235–249
Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP (2005) Comparison of automated docking programs as virtual screening tools. J Med Chem 48(4):962–976
Kontoyianni M, Sokol Glenn S, McClellan Laura M (2005) Evaluation of library ranking efficacy in virtual screening. J Comput Chem 26(1):11–22
Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931
McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley S, Maiorov V, Truchon J-F, Cornell WD (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47(4):1504–1519
Muegge I, Enyedy IJ (2004) Virtual screening for kinase targets. Curr Med Chem 11(6):693–707
McInnes C (2006) Improved lead-finding for kinase targets using high-throughput docking. Curr Opin Drug Discov Dev 9(3):339–347
Peng H, Huang N, Qi J, Xie P, Xu C, Wang J, Yang C (2003) Identification of novel inhibitors of BCR-ABL tyrosine kinase via virtual screening. Bioorg Med Chem Lett 13(21):3693–3699
Hancock CN, Macias A, Lee EK, Yu SY, MacKerell AD Jr, Shapiro P (2005) Identification of novel extracellular signal-regulated kinase docking domain inhibitors. J Med Chem 48(14):4586–4595
Park H, Bahn YJ, Jeong DG, Woo EJ, Kwon JS, Ryu SE (2008) Identification of novel inhibitors of extracellular signal-regulated kinase 2 based on the structure-based virtual screening. Bioorg Med Chem Lett 18(20):5372–5376
Toledo-Sherman L, Deretey E, Slon-Usakiewicz JJ, Ng W, Dai J-R, Foster JE, Redden PR, Uger MD, Liao LC, Pasternak A, Reid N (2005) Frontal affinity chromatography with MS detection of EphB2 tyrosine kinase receptor. 2. Identification of small-molecule inhibitors via coupling with virtual screening. J Med Chem 48(9):3221–3230
Richardson CM, Nunns CL, Williamson DS, Parratt MJ, Dokurno P, Howes R, Borgognoni J, Drysdale MJ, Finch H, Hubbard RE, Jackson PS, Kierstan P, Lentzen G, Moore JD, Murray JB, Simmonite H, Surgenor AE, Torrance CJ (2007) Discovery of a potent CDK2 inhibitor with a novel binding mode, using virtual screening and initial, structure-guided lead scoping. Bioorg Med Chem Lett 17(14):3880–3885
Cavasotto CN, Ortiz MA, Abagyan RA, Piedrafita FJ (2006) In silico identification of novel EGFR inhibitors with antiproliferative activity against cancer cells. Bioorg Med Chem Lett 16(7):1969–1974
Li J, Tan J-z, Chen L-l, Zhang J, Shen X, Mei C-l, Fu L-l, Lin L-p, Ding J, Xiong B, Xiong X-s, Liu H, Luo X-m, Jiang H-l (2006) Design, synthesis and antitumor evaluation of a new series of N-substituted-thiourea derivatives. Acta Pharmacol Sin 27(9):1259–1271
Warner SL, Bashyam S, Vankayalapati H, Bearss DJ, Han H, Von Hoff DD, Hurley LH (2006) Identification of a lead small-molecule inhibitor of the Aurora kinases using a structure-assisted, fragment-based approach. Mol Cancer Ther 5(7):1764–1773
Fu D-H, Jiang W, Zheng J-T, Zhao G-Y, Li Y, Yi H, Li Z-R, Jiang J-D, Yang K-Q, Wang Y, Si S-Y (2008) Jadomycin B, an Aurora-B kinase inhibitor discovered through virtual screening. Mol Cancer Ther 7(8):2386–2393
Foloppe N, Fisher LM, Howes R, Potter A, Robertson AGS, Surgenor AE (2006) Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg Med Chem 14(14):4792–4802
Pierce AC, Jacobs M, Stuver-Moody C (2008) Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase. J Med Chem 51(6):1972–1975
Peach ML, Tan N, Choyke SJ, Giubellino A, Athauda G, Burke TR Jr, Nicklaus MC, Bottaro DP (2009) Directed discovery of agents targeting the met tyrosine kinase domain by virtual screening. J Med Chem 52(4):943–951
Qin Z, Zhang J, Xu B, Chen L, Wu Y, Yang X, Shen X, Molin S, Danchin A, Jiang H, Qu D (2006) Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus epidermidis infections. BMC Microbiol 6:96
Hu X, Prehna G, Stebbins CE (2007) Targeting plague virulence factors: a combined machine learning method and multiple conformational virtual screening for the discovery of yersinia protein kinase A inhibitors. J Med Chem 50(17):3980–3983
Segura-Cabrera A, Rodriguez-Perez MA (2008) Structure-based prediction of Mycobacterium tuberculosis shikimate kinase inhibitors by high-throughput virtual screening. Bioorg Med Chem Lett 18(11):3152–3157
Cozza G, Bonvini P, Zorzi E, Poletto G, Pagano MA, Sarno S, Donella-Deana A, Zagotto G, Rosolen A, Pinna LA, Meggio F, Moro S (2006) Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application. J Med Chem 49(8):2363–2366
Golub AG, Yakovenko OY, Bdzhola VG, Sapelkin VM, Zien P, Yarmoluk SM (2006) Evaluation of 3-Carboxy-4(1H)-quinolones as inhibitors of human protein kinase CK2. J Med Chem 49(22):6443–6450
Cozza G, Gianoncelli A, Montopoli M, Caparrotta L, Venerando A, Meggio F, Pinna LA, Zagotto G, Moro S (2008) Identification of novel protein kinase CK1 delta (CK1delta) inhibitors through structure-based virtual screening. Bioorg Med Chem Lett 18(20):5672–5675
Kang NS, Lee GN, Kim CH, Bae MA, Kim I, Cho YS (2009) Identification of small molecules that inhibit GSK-3beta through virtual screening. Bioorg Med Chem Lett 19(2):533–537
Sun D, Chuaqui C, Deng Z, Bowes S, Chin D, Singh J, Cullen P, Hankins G, Lee W-C, Donnelly J, Friedman J, Josiah S (2006) A kinase-focused compound collection: compilation and screening strategy. Chem Biol Drug Des 67(6):385–394
Gozalbes R, Simon L, Froloff N, Sartori E, Monteils C, Baudelle R (2008) Development and experimental validation of a docking strategy for the generation of kinase-targeted libraries. J Med Chem 51(11):3124–3132
Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288
Najmanovich R, Kuttner J, Sobolev V, Edelman M (2000) Side-chain flexibility in proteins upon ligand binding. Proteins 39(3):261–268
Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47(3):558–565
Verdonk ML, Mortenson PN, Hall RJ, Hartshorn MJ, Murray CW (2008) Protein-ligand docking against non-native protein conformers. J Chem Inf Model 48(11):2214–2225
Murray CW, Baxter CA, Frenkel AD (1999) The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase. J Comput Aided Mol Des 13(6):547–562
Jain AN (2008) Bias, reporting, and sharing: computational evaluations of docking methods. J Comput Aided Mol Des 22(3–4):201–212
Rapp CS, Schonbrun C, Jacobson MP, Kalyanaraman C, Huang N (2009) Automated site preparation in physics-based rescoring of receptor ligand complexes. Proteins 77:52–61
Jain AN (2009) Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation. J Comput Aided Mol Des 23(6):355–374
Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67(1):83–84
Claussen H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308(2):377–395
Knegtel RM, Kuntz ID, Oshiro CM (1997) Molecular docking to ensembles of protein structures. J Mol Biol 266(2):424–440
Verdonk ML, Berdini V, Hartshorn MJ, Mooij WT, Murray CW, Taylor RD, Watson P (2004) Virtual screening using protein-ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci 44(3):793–806
Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801
Irwin JJ (2008) Community benchmarks for virtual screening. J Comput Aided Mol Des 22(3–4):193–199
Maestro (2006) Schrodinger, LLC, Portland, OR, USA
Schrodinger (2008) LigPrep 2.2. Manual. p 108
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759
Brooijmans N, Humblet C (2010) Chemical space sampling by different scoring functions and crystal structures. J Comput Aided Mol Des 24(5):433–447
Maestro (2007) Schrodinger, LLC, New York, NY
Venturelli A, Tondi D, Cancian L, Morandi F, Cannazza G, Segatore B, Prati F, Amicosante G, Shoichet BK, Costi MP (2007) Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy. J Med Chem 50(23):5644–5654
OMEGA (2007) OpenEye Scientific Software, Santa Fe, NM
Glide (2007) In: Manual. Schrodinger, LLC, Portland, OR, USA, p 112
Nicholls A (2008) What do we know and when do we know it? J Comput Aided Mol Des 22(3–4):239–255
Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36
Good AC, Oprea TI (2008) Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection? J Comput Aided Mol Des 22(3–4):169–178
Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6(4):909–919
Acknowledgments
The authors thank David C. Thompson, Brajesh K. Rai, J. Christian Baber, Kristi Yi Fan, and Yongbo for participating in the virtual screening studies using the DUD.
Author information
Authors and Affiliations
Corresponding author
Additional information
Natasja Brooijmans and Jason B. Cross contributed equally to this work.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Brooijmans, N., Cross, J.B. & Humblet, C. Biased retrieval of chemical series in receptor-based virtual screening. J Comput Aided Mol Des 24, 1053–1062 (2010). https://doi.org/10.1007/s10822-010-9394-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-010-9394-9