Skip to main content

Advertisement

Log in

The molecular mechanism studies of chirality effect of PHA-739358 on Aurora kinase A by molecular dynamics simulation and free energy calculations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Aurora kinase family is one of the emerging targets in oncology drug discovery and several small molecules targeting aurora kinases have been discovered and evaluated under early phase I/II trials. Among them, PHA-739358 (compound 1r) is a 3-aminopyrazole derivative with strong activity against Aurora A under early phase II trial. Inhibitory potency of compound 1r (the benzylic substituent at the pro-R position) is 30 times over that of compound 1s (the benzylic substituent at the pro-S position). In present study, the mechanism of how different configurations influence the binding affinity was investigated using molecular dynamics (MD) simulations, free energy calculations and free energy decomposition analysis. The predicted binding free energies of these two complexes are consistent with the experimental data. The analysis of the individual energy terms indicates that although the van der Waals contribution is important for distinguishing the binding affinities of these two inhibitors, the electrostatic contribution plays a more crucial role in that. Moreover, it is observed that different configurations of the benzylic substituent could form different binding patterns with protein, thus leading to variant inhibitory potency of compounds 1r and 1s. The combination of different molecular modeling techniques is an efficient way to interpret the chirality effects of inhibitors and our work gives valuable information for the chiral drug design in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bischoff JR, Plowman GD (1999) The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 9:454–459

    Article  CAS  Google Scholar 

  2. Meraldi P, Honda R, Nigg EA (2004) Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 14:29–36

    Article  CAS  Google Scholar 

  3. Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4:927–936

    Article  CAS  Google Scholar 

  4. Katayama H, Brinkley WR, Sen S (2003) The Aurora kinases: Role in cell transformation and tumorigenesis. Cancer Metast Rev 22:451–464

    Article  Google Scholar 

  5. Sakakura C, Hagiwara A, Yasuoka R, Fujita Y, Nakanishi M, Masuda K, Shimomura K, Nakamura Y, Inazawa J, Abe T, Yamagishi H (2001) Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Brit J Cancer 84:824–831

    Article  CAS  Google Scholar 

  6. Zhu J, Abbruzzese JL, Izzo J, Hittelman WN, Li D (2005) AURKA amplification, chromosome instability, and centrosome abnormality in human pancreatic carcinoma cells. Cancer Genet Cytogen 159:10–17

    Article  CAS  Google Scholar 

  7. Dutertre S, Descamps S, Prigent C (2002) On the role of aurora-A in centrosome function. Oncogene 21:6175–6183

    Article  CAS  Google Scholar 

  8. Marumoto T, Zhang D, Saya H (2005) Aurora-A [mdash] a guardian of poles. Nat Rev Cancer 5:42–50

    Article  CAS  Google Scholar 

  9. Barr AR, Gergely F (2007) Aurora-A: the maker and breaker of spindle poles. J Cell Sci 120:2987–2996

    Article  CAS  Google Scholar 

  10. Zhou H, Kuang J, Zhong L, Kuo W-l, Gray J, Sahin A, Brinkley B, Sen S (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–193

    Article  CAS  Google Scholar 

  11. Yang H, Ou CC, Feldman RI, Nicosia SV, Kruk PA, Cheng JQ (2004) Aurora-A kinase regulates telomerase activity through c-Myc in human ovarian and breast epithelial cells. Cancer Res 64:463–467

    Article  CAS  Google Scholar 

  12. Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano Y (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59:2041–2044

    CAS  Google Scholar 

  13. Nadler Y, Camp RL, Schwartz C, Rimm DL, Kluger HM, Kluger Y (2008) Expression of Aurora A (but Not Aurora B) is predictive of survival in breast cancer. Clin Cancer Res 14:4455–4462

    Article  CAS  Google Scholar 

  14. Zhang Z, Singh M, Davidson S, Rosen DG, Yang G, Liu J (2007) Activation of BTAK expression in primary ovarian surface epithelial cells of prophylactic ovaries. Modern Pathol 20:1078–1084

    Article  CAS  Google Scholar 

  15. Rojanala S, Han H, Muñoz RM, Browne W, Nagle R, Von Hoff DD, Bearss DJ (2004) The mitotic serine threonine kinase, Aurora-2, is a potential target for drug development in human pancreatic cancer. Mol Cancer Ther 3:451–457

    CAS  Google Scholar 

  16. Reiter R, Gais P, Jütting U, Steuer-Vogt MK, Pickhard A, Bink K, Rauser S, Lassmann S, Höfler H, Werner M, Walch A (2006) Aurora kinase A messenger RNA overexpression is correlated with tumor progression and shortened survival in head and neck squamous cell carcinoma. Clin Cancer Res 12:5136–5141

    Article  CAS  Google Scholar 

  17. Nishida N, Nagasaka T, Kashiwagi K, Boland R, Goel A (2007) High copy amplification of the Aurora-A Gene is associated with chromosomal instability phenotype in human colorectal cancers. Cancer Biol Ther 6:520–528

    Google Scholar 

  18. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A, Su M, Golec JMC, Miller KM (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10:262–267

    Article  CAS  Google Scholar 

  19. Fancelli D, Moll J, Varasi M, Bravo R, Artico R, Berta D, Bindi S, Cameron A, Candiani I, Cappella P, Carpinelli P, Croci W, Forte B, Giorgini ML, Klapwijk J, Marsiglio A, Pesenti E, Rocchetti M, Roletto F, Severino D, Soncini C, Storici P, Tonani R, Zugnoni P, Vianello P (2006) 1, 4, 5, 6-Tetrahydropyrrolo[3, 4-c] pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J Med Chem 49:7247–7251

    Article  CAS  Google Scholar 

  20. Jung FH, Pasquet G, Lambert-van der Brempt C, Lohmann J-JM, Warin N, Renaud F, Germain H, De Savi C, Roberts N, Johnson T, Dousson C, Hill GB, Mortlock AA, Heron N, Wilkinson RW, Wedge SR, Heaton SP, Odedra R, Keen NJ, Green S, Brown E, Thompson K, Brightwell S (2006) Discovery of novel and potent thiazoloquinazolines as selective Aurora A and B kinase inhibitors. J Med Chem 49:955–970

    Article  CAS  Google Scholar 

  21. Sloane DA, Trikic MZ, Chu MLH, Lamers MBAC, Mason CS, Mueller I, Savory WJ, Williams DH, Eyers PA (2010) Drug-resistant Aurora A mutants for cellular target validation of the small molecule kinase inhibitors MLN8054 and MLN8237. Chem Biol 5:563–576

    Google Scholar 

  22. Berdini V, Boulstridge JA, Carr MG, Cross DM, Curry J, Devine LA, Early TR, Fazal L, Gill AL, Heathcote M, Maman S, Matthews JE, McMenamin RL, Navarro EF, O’rien MA, O’eilly M, Rees DC, Reule M, Tisi D, Williams G, Vinkovic M, Wyatt PG (2009) Fragment-based discovery of the Pyrazol-4-yl Urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem 52:379–388

    Article  Google Scholar 

  23. Rüth M, Blackwood E, Burdick D, Corson L, Dotson J, Drummond J, Fields C, Georges GJ, Goller B, Halladay J, Hunsaker T, Kleinheinz T, Krell H-W, Li J, Liang J, Limberg A, McNutt A, Moffat J, Phillips G, Ran Y, Safina B, Ultsch M, Walker L, Wiesmann C, Zhang B, Zhou A, Zhu B-Y, Rüger P, Cochran AG (2008) A Pentacyclic Aurora Kinase Inhibitor (AKI-001) with High in Vivo Potency and Oral Bioavailability. J Med Chem 51:4465–4475

    Article  Google Scholar 

  24. Burdick D, Corson L, Dotson J, Drummond J, Fields C, Huang OW, Hunsaker T, Kleinheinz T, Krueger E, Liang J, Moffat J, Phillips G, Pulk R, Rawson TE, Ultsch M, Walker L, Wiesmann C, Zhang B, Zhu B-Y, Cochran AG (2009) A class of 2, 4-Bisanilinopyrimidine Aurora A inhibitors with unusually high selectivity against Aurora B. J Med Chem 52:3300–3307

    Article  Google Scholar 

  25. Pollard JR, Mortimore M (2009) Discovery and development of aurora kinase inhibitors as anticancer agents. J Med Chem 52:2629–2651

    Article  CAS  Google Scholar 

  26. Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W, Galvin KM, Hoar KM, Huck JJ, LeRoy PJ, Ray ET, Sells TB, Stringer B, Stroud SG, Vos TJ, Weatherhead GS, Wysong DR, Zhang M, Bolen JB, Claiborne CF (2007) Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. P Natl Acad Sci USA 104:4106–4111

    Article  CAS  Google Scholar 

  27. Cohen RB, Jones SF, von Mehren M, Cheng J, Spiegel DM, Laffranchi B, Mariani M, Spinelli R, Magazzu D, Burris HA III (2008) Phase I study of the pan aurora kinases (AKs) inhibitor PHA-739358 administered as a 24 h infusion without/with G-CSF in a 14-day cycle in patients with advanced solid tumors. J Clin Oncol (Meeting Abstracts) 26:2520

    Google Scholar 

  28. De Jonge M, Steeghs N, Verweij J, Nortier JW, Eskens F, Ouwerkerk J, Laffranchi B, Mariani M, Rocchetti M, Gelderblom H (2008) Phase I study of the aurora kinases (AKs) inhibitor PHA-739358 administered as a 6 and 3-h IV infusion on Days 1, 8, 15 every 4 wks in patients with advanced solid tumors. J Clin Oncol (Meeting Abstracts) 26:3507

    Google Scholar 

  29. Wang W, Kollman PA (2000) Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J Mol Biol 303:567–582

    Article  CAS  Google Scholar 

  30. Matthew RL, Yong D, Peter AK (2000) Use of MM-PB/SA in estimating the free energies of proteins: Application to native, intermediates, and unfolded villin headpiece. Proteins 39:309–316

    Article  Google Scholar 

  31. Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43:3786–3791

    Article  CAS  Google Scholar 

  32. Hou T, Guo S, Xu X (2002) Predictions of binding of a diverse set of ligands to gelatinase-A by a combination of molecular dynamics and continuum solvent models. J Phys Chem B 106:5527–5535

    Article  CAS  Google Scholar 

  33. Hou T, Zhu L, Chen L, Xu X (2002) Mapping the binding site of a large set of quinazoline type EGF-R inhibitors using molecular field analyses and molecular docking studies. J Chem Info Comp Sci 43:273–287

    Google Scholar 

  34. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts Chem Res 33:889–897

    Article  CAS  Google Scholar 

  35. Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of Efavirenz by Docking and MM-PBSA. J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  36. Wang W, Kollman PA (2001) Computational study of protein specificity: the molecular basis of HIV-1 protease drug resistance. P Natl Acad Sci USA 98:14937–14942

    Article  CAS  Google Scholar 

  37. Lepscaron M, Kriz Z, Havlas Z (2004) Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Proteins 57:279–293

    Article  Google Scholar 

  38. Hou T, Chen K, McLaughlin WA, Lu B, Wang W (2006) Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput Biol 2:47–56

    Article  Google Scholar 

  39. Weis A, Katebzadeh K, Söderhjelm P, Nilsson I, Ryde U (2006) Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 49:6596–6606

    Article  CAS  Google Scholar 

  40. Hou T, Yu R (2007) Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. J Med Chem 50:1177–1188

    Article  CAS  Google Scholar 

  41. Luo R, David L, Gilson MK (2002) Accelerated Poisson–Boltzmann calculations for static and dynamic systems. J Comput Chem 23:1244–1253

    Article  CAS  Google Scholar 

  42. Holger G, David AC (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem 25:238–250

    Article  Google Scholar 

  43. Hou T, McLaughlin W, Lu B, Chen K, Wang W (2005) Prediction of binding affinities between the human Amphiphysin-1 SH3 domain and its peptide ligands using homology modeling, molecular dynamics and molecular field analysis. J Prote Res 5:32–43

    Article  Google Scholar 

  44. Fang L, Zhang H, Cui W, Ji M (2008) Studies of the mechanism of selectivity of protein tyrosine phosphatase 1B (PTP1B) bidentate inhibitors using molecular dynamics simulations and free energy calculations. J Chem Info Model 48:2030–2041

    Article  CAS  Google Scholar 

  45. Hou T, Zhang W, Case DA, Wang W (2008) Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain. J Mol Biol 376:1201–1214

    Article  CAS  Google Scholar 

  46. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  47. David AC, Thomas EC III, Tom D, Holger G, Ray L, Kenneth MM Jr, Alexey O, Carlos S, Bing W, Robert JW (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Laham A, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision C.02

  49. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. The J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  50. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  Google Scholar 

  51. Yong D, Chun W, Shibasish C, Mathew CL, Guoming X, Wei Z, Rong Y, Piotr C, Ray L, Taisung L, James C, Junmei W, Peter K (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  Google Scholar 

  52. Junmei W, Romain MW, James WC, Peter AK, David AC (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  Google Scholar 

  53. William LJ, Jayaraman C, Jeffry DM, Roger WI, Michael LK (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  Google Scholar 

  54. Tom D, Darrin Y, Lee P (1993) Particle mesh Ewald: an N [center-dot] log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  Google Scholar 

  55. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  56. Gilson MK, Sharp KA, Honig BH (1988) Calculating the electrostatic potential of molecules in solution: method and error assessment. J Comput Chem 9:327–335

    Article  CAS  Google Scholar 

  57. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330:891–913

    Article  CAS  Google Scholar 

  58. Alexey O, Donald B, David AC (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55:383–394

    Article  Google Scholar 

  59. Case DA, Darden TA, Cheatham, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) Amber 9

Download references

Acknowledgments

The project was supported by the National Science and Technology Major Special Project of China (No. 2009ZX09501-011) and the Natural Science Foundation of China (No. 21073105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingjuan Ji or Fushi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Cui, W., Chen, Q. et al. The molecular mechanism studies of chirality effect of PHA-739358 on Aurora kinase A by molecular dynamics simulation and free energy calculations. J Comput Aided Mol Des 25, 171–180 (2011). https://doi.org/10.1007/s10822-010-9408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9408-7

Keywords

Navigation