Skip to main content
Log in

Modeling of the structure and interactions of the B. anthracis antitoxin, MoxX: deletion mutant studies highlight its modular structure and repressor function

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Our previous report on Bacillus anthracis toxin-antitoxin module (MoxXT) identified it to be a two component system wherein, PemK-like toxin (MoxT) functions as a ribonuclease (Agarwal S et al. JBC 285:7254–7270, 2010). The labile antitoxin (MoxX) can bind to/neutralize the action of the toxin and is also a DNA-binding protein mediating autoregulation. In this study, molecular modeling of MoxX in its biologically active dimeric form was done. It was found that it contains a conserved Ribbon-Helix-Helix (RHH) motif, consistent with its DNA-binding function. The modeled MoxX monomers dimerize to form a two-stranded antiparallel ribbon, while the C-terminal region adopts an extended conformation. Knowledge guided protein–protein docking, molecular dynamics simulation, and energy minimization was performed to obtain the structure of the MoxXT complex, which was exploited for the de novo design of a peptide capable of binding to MoxT. It was found that the designed peptide caused a decrease in MoxX binding to MoxT by 42% at a concentration of 2 μM in vitro. We also show that MoxX mediates negative transcriptional autoregulation by binding to its own upstream DNA. The interacting regions of both MoxX and DNA were identified in order to model their complex. The repressor activity of MoxX was found to be mediated by the 16 N-terminal residues that contains the ribbon of the RHH motif. Based on homology with other RHH proteins and deletion mutant studies, we propose a model of the MoxX–DNA interaction, with the antiparallel β-sheet of the MoxX dimer inserted into the major groove of its cognate DNA. The structure of the complex of MoxX with MoxT and its own upstream regulatory region will facilitate design of molecules that can disrupt these interactions, a strategy for development of novel antibacterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

TA:

Toxin-antitoxin

RHH:

Ribbon-helix-helix

ORF:

Open reading frame

CD:

Circular dichroism

aa:

Amino acids

RFI:

Relative fluorescence intensity

MD:

Molecular dynamics

EM:

Energy minimization

References

  1. Jensen RB, Gerdes K (1995) Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol Microbiol 17:205–210

    Article  CAS  Google Scholar 

  2. Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3:371–382

    Article  CAS  Google Scholar 

  3. Gerdes K, Rasmussen PB, Molin S (1986) Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci USA 83:3116–3120

    Article  CAS  Google Scholar 

  4. Aizenman E, Engelberg-Kulka H, Glaser G (1996) An E. coli chromosomal ‘addiction module’ regulated by guanosine 3′–5′-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci USA 93:6059–6063

    Article  CAS  Google Scholar 

  5. Brooun A, Songhua L, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640–646

    Article  CAS  Google Scholar 

  6. Agarwal S, Agarwal S, Bhatnagar R (2007) Identification and characterization of a novel toxin-antitoxin module from Bacillus anthracis. FEBS Lett 581:1727–1734

    Article  CAS  Google Scholar 

  7. Agarwal S, Mishra NK, Bhatnagar S, Bhatnagar R (2010) PemK toxin of Bacillus anthracis is a ribonuclease: an insight into its active site, structure and function. J Biol Chem 285:7254–7270

    Article  CAS  Google Scholar 

  8. De Jonge N, Garcia-Pino A, Buts L, Haesaerts S, Charlier D, Zangger K, Wynes L, De Greve H, Loris R (2009) Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol Cell 35:154–163

    Article  Google Scholar 

  9. Oberer M, Zangger K, Gruber K, Keller W (2007) The solution structure of ParD, the antidote of the ParDE toxin–antitoxin module, provides the structural basis for DNA and toxin binding. Protein Sci 16:1676–1688

    Article  CAS  Google Scholar 

  10. Raumann BE, Rould MA, Pabo CO, Sauer RT (1994) DNA recognition by β-sheets in the Arc repressor-operator crystal structure. Nature 367:754–757

    Article  CAS  Google Scholar 

  11. Gomis-Ruth FX, Sola M, Acebo P, Parraga A, Guasch A, Gonzalez EritigaR, Espinosa M, del Solar G, Coll M (1998) The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. EMBO J 17:7404–7415

    Article  CAS  Google Scholar 

  12. Somers WS, Philips SE (1992) Crystal structure of the met repressor-operator complex at 2.8 Å resolution reveals DNA recognition by β-strands. Nature 359:387–393

    Article  CAS  Google Scholar 

  13. Schreiter ER, Sintchak MD, Guo Y, Chivers PT, Sauer RT, Drennan CL (2003) Crystal structure of the nickel-responsive transcription factor NikR. Nat Struct Biol 10:794–799

    Article  CAS  Google Scholar 

  14. Kamada K, Hanoaka F, Burley SK (2003) Crystal structure of MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol Cell 11:875–884

    Article  CAS  Google Scholar 

  15. Madl T, Melderen VM, Mine N, Respondek M, Oberer M, Keller W, Khatai L, Zangger K (2006) Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA. J Mol Biol 364:170–185

    Article  CAS  Google Scholar 

  16. Li GY, Zhang Y, Inouye M, Ikura M (2008) Structural mechanism of transcripitional autorepression of the E. coli RelB/RelE antitoxin/toxin module. J Mol Biol 380:107–119

    Article  CAS  Google Scholar 

  17. Schreiter ER, Wang SC, Zamble DB, Drennan CL (2006) NikR-operator complex structure and the mechanism of repressor activation by metal ions. Proc Natl Acad Sci USA 103:13676–13681

    Article  CAS  Google Scholar 

  18. Mattison K, Wilbur JS, So M, Brennan RG (2006) Structure of FitAB from Neisseria gonorrhoeae bound to DNA reveals a tetramer of toxin-antitoxin heterodimers containing pin domains and ribbon-helix-helix motifs. J Biol Chem 281:37942–37951

    Article  CAS  Google Scholar 

  19. Kedzierska B, Lian L, Hayes F (2007) Toxin–antitoxin regulation: bimodal interaction of YefM–YoeB with paired DNA palindromes exerts transcriptional autorepression. Nucleic Acids Res 35:325–339

    Article  CAS  Google Scholar 

  20. Gogos A, Mu H, Bahna F, Gomez CA, Shapiro L (2003) Crystal structure of YdcE protein from Bacillus subtilis. Proteins 53:320–322

    Article  CAS  Google Scholar 

  21. Andrade MA (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 6:383–390

    Article  CAS  Google Scholar 

  22. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structure. Protein Sci 9:1753–1773

    Article  CAS  Google Scholar 

  23. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  24. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205–D210

    Article  CAS  Google Scholar 

  25. Kelly LA, Sternberg MJE (2009) PHYRE:Protein structure prediction on the web: a case study using the PHYRE server. Nat Protoc 4:363–371

    Article  Google Scholar 

  26. Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960

    Article  Google Scholar 

  27. Hall TA (1999) BIOEDIT, a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  28. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  29. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  30. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310–W314

    Article  CAS  Google Scholar 

  31. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  32. Darden T, York D, Pederson L (1993) Particle Mesh-Ewald method: an N-log (N) method for ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  33. Fung HK, Welsh WJ, Floudas CA (2008) Computational de novo peptide and protein design: rigid templates versus flexible templates. Ind Engin Chem Res 47:993–1001

    Article  CAS  Google Scholar 

  34. Maupetit J, Derreumaux P, Tuffery P (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res 37(suppl 2):W498–W503

    Article  CAS  Google Scholar 

  35. Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78:2029–2040

    CAS  Google Scholar 

  36. Cutting SM, Vander Horn PB (1990) Genetic analysis. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, UK, pp 27–74

    Google Scholar 

  37. Van Dijk M, Bonvin AM (2009) 3D-DART: a DNA structure modeling server. Nucleic Acid Res 37:W235–W239

    Article  Google Scholar 

  38. Schlessinger A, Punta M, Yachdav G, Kajan L, Rost B (2009) Improved disorder prediction by combination of orthogonal approaches. PLoS One 4:e4433

    Article  Google Scholar 

  39. Kamphuis MB, Monti MC, van den Heuvel RH, López-Villarejo J, Díaz-Orejas R, Boelens R (2007) Structure and Function of bacterial Kid-Kis and related toxin-antitoxin systems. Protein Pept Lett 14:113–124

    Article  CAS  Google Scholar 

  40. Chivers PT, Tahirov TH (2005) Structure of Pyrococcus horikoshii NikR: nickel sensing and implications for the regulation of DNA recognition. J Mol Biol 348:597–607

    Article  CAS  Google Scholar 

  41. Dian C, Schauer K, Kapp U, McSweeney SM, Labigne A, Terradot L (2006) Sructural basis of the nickel response in Helicobacter pylori: crystal structures of HpNikR in Apo and nickel bound states. J Mol Biol 361:715–730

    Article  CAS  Google Scholar 

  42. Ananthraman V, Aravind L (2003) New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol 4:R81

    Article  Google Scholar 

  43. Wilbur JS, Chivers PT, Mattison K, Potter L, Brennan RG, So M (2005) Neisseria gonorrhoeae FitA interacts with FitB to bind DNA through its ribbon-helix-helix motif. Biochemistry 44:12515–12524

    Article  CAS  Google Scholar 

  44. Weihofen WA, Cicek A, Pratto F, Saenger W (2006) Structures of omega repressors bound to direct and inverted DNA repeats explain modulation of transcription. Nucleic Acids Res 34:1450–1458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Prof. B. Jayaram for providing access to Super Computing Facility for Bioinformatics and Computational Biology, IIT (Delhi) for running MD simulations. We also acknowledge the help of Barak Raveh and Ora Schueler-Furman at the Hebrew University, Jerusalem for enabling exhaustive runs of FlexPepDock simulations on their server and for their valuable inputs. N.C. acknowledges University Grants Commission and Council of Scientific and Industrial Research for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonika Bhatnagar or Rakesh Bhatnagar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Superposition of MoxXT complex with CcdAB (3HPW). The toxin dimers of the TA complexes were superimposed and are shown here (MoxT in cyan and CcdB in orange). The C-terminus (residues 40–72) of CcdA are shown in yellow while the two chains of MoxX dimer are shown in pink and purple (TIFF 20328 kb)

Supplementary material 2 (DOC 32 kb)

Supplementary material 3 (DOC 27 kb)

Supplementary material 4 (DOC 27 kb)

Supplementary material 5 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, N., Agarwal, S., Verma, S. et al. Modeling of the structure and interactions of the B. anthracis antitoxin, MoxX: deletion mutant studies highlight its modular structure and repressor function. J Comput Aided Mol Des 25, 275–291 (2011). https://doi.org/10.1007/s10822-011-9419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9419-z

Keywords

Navigation