Abstract
Various in vitro and in-silico methods have been used for drug genotoxicity tests, which show limited genotoxicity (GT+) and non-genotoxicity (GT−) identification rates. New methods and combinatorial approaches have been explored for enhanced collective identification capability. The rates of in-silco methods may be further improved by significantly diversified training data enriched by the large number of recently reported GT+ and GT− compounds, but a major concern is the increased noise levels arising from high false-positive rates of in vitro data. In this work, we evaluated the effect of training data size and noise level on the performance of support vector machines (SVM) method known to tolerate high noise levels in training data. Two SVMs of different diversity/noise levels were developed and tested. H-SVM trained by higher diversity higher noise data (GT+ in any in vivo or in vitro test) outperforms L-SVM trained by lower noise lower diversity data (GT+ in in vivo or Ames test only). H-SVM trained by 4,763 GT+ compounds reported before 2008 and 8,232 GT− compounds excluding clinical trial drugs correctly identified 81.6% of the 38 GT+ compounds reported since 2008, predicted 83.1% of the 2,008 clinical trial drugs as GT−, and 23.96% of 168 K MDDR and 27.23% of 17.86M PubChem compounds as GT+. These are comparable to the 43.1–51.9% GT+ and 75–93% GT− rates of existing in-silico methods, 58.8% GT+ and 79% GT− rates of Ames method, and the estimated percentages of 23% in vivo and 31–33% in vitro GT+ compounds in the “universe of chemicals”. There is a substantial level of agreement between H-SVM and L-SVM predicted GT+ and GT− MDDR compounds and the prediction from TOPKAT. SVM showed good potential in identifying GT+ compounds from large compound libraries based on higher diversity and higher noise training data.


Similar content being viewed by others
References
Custer LL, Sweder KS (2008) Curr Drug Metab 9:978
Bolzan AD, Bianchi MS (2002) Mutat Res 512:121
Li Y, Luan Y, Qi X, Li M, Gong L, Xue X, Wu X, Wu Y, Chen M, Xing G, Yao J, Ren J (2010) Toxicol Sci 118(2):435
Snyder RD, Pearl GS, Mandakas G, Choy WN, Goodsaid F, Rosenblum IY (2004) Environ Mol Mutagen 43:143
Schwerdtle T, Ebert F, Thuy C, Richter C, Mullenders LH, Hartwig A (2010) Chem Res Toxicol 23(2):432–442
Tweats DJ, Blakey D, Heflich RH, Jacobs A, Jacobsen SD, Morita T, Nohmi T, O’Donovan MR, Sasaki YF, Sofuni T, Tice R (2007) Mutat Res 627:78
Kirkland D, Aardema M, Henderson L, Muller L (2005) Mutat Res 584:1
Snyder RD, Smith MD (2005) Drug Discov Today 10:1119
Rosenkranz HS (2003) Mutat Res 529:117
Li H, Ung CY, Yap CW, Xue Y, Li ZR, Cao ZW, Chen YZ (2005) Chem Res Toxicol 18:1071
White AC, Mueller RA, Gallavan RH, Aaron S, Wilson AG (2003) Mutat Res 539:77
Kirkland D, Speit G (2008) Mutat Res 654:114
Kirkland D, Pfuhler S, Tweats D, Aardema M, Corvi R, Darroudi F, Elhajouji A, Glatt H, Hastwell P, Hayashi M, Kasper P, Kirchner S, Lynch A, Marzin D, Maurici D, Meunier JR, Muller L, Nohynek G, Parry J, Parry E, Thybaud V, Tice R, van Benthem J, Vanparys P, White P (2007) Mutat Res 628:31
Hastwell PW, Chai LL, Roberts KJ, Webster TW, Harvey JS, Rees RW, Walmsley RM (2006) Mutat Res 607:160
Ritter D, Knebel J (2009) Genotoxicity testing in vitro - development of a higher throughput analysis method based on the comet assay. Toxicol In Vitro 23(8):1570–1575
Glick M, Jenkins JL, Nettles JH, Hitchings H, Davies JW (2006) J Chem Inf Model 46:193
Vasquez MZ (2010) Combining the in vivo comet and micronucleus assays: a practical approach to genotoxicity testing and data interpretation. Mutagenesis 25(2):187–199
Pfuhler S, Kirkland D, Kasper P, Hayashi M, Vanparys P, Carmichael P, Dertinger S, Eastmond D, Elhajouji A, Krul C, Rothfuss A, Schoening G, Smith A, Speit G, Thomas C, van Benthem J, Corvi R (2009) Mutat Res 680:31
Brambilla G, Martelli A (2009) Update on genotoxicity and carcinogenicity testing of 472 marketed pharmaceuticals. Mutat Res 681(2–3):209–229
Ma XH, Jia J, Zhu F, Xue Y, Li ZR, Chen YZ (2009) Comb Chem High Throughput Screen 12:344
Pearlman RS (1988) In: CONCORD User’s Manual, Tripos, St. Louis, MO
Pochet N, De Smet F, Suykens JA, De Moor BL (2004) Bioinformatics 20:3185
Matthews BW (1975) Biochim Biophys Acta 405:442
Chin SF, Wang Y, Thorne NP, Teschendorff AE, Pinder SE, Vias M, Naderi A, Roberts I, Barbosa-Morais NL, Garcia MJ, Iyer NG, Kranjac T, Robertson JF, Aparicio S, Tavaré S, Ellis I, Brenton JD, Caldas C (2007) Using array-comparative genomic hybridization to define molecular portraits of primary breast cancers. Oncogene 26(13):1959–1970
Chou KC, Shen HB (2007) Large-scale plant protein subcellular location prediction. J Cell Biochem 100(3):665–678
Karakoc E, Cherkasov A, Sahinalp SC (2006) Bioinformatics 22:e243
Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Machine Learning 6:37–66
Witten IH, Frank E (2005) Data Mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco
Willett P (1998) J Chem Inf Comput Sci 38:983
Bostrom J, Hogner A, Schmitt S (2006) J Med Chem 49:6716
Liu XH, Ma XH, Tan CY, Jiang YY, Go ML, Low BC, Chen YZ (2009) J Chem Inf Model 49:2101
Xue Y, Li H, Ung CY, Yap CW, Chen YZ (2006) Chem Res Toxicol 19:1030
Bolzan AD BMS (2002) Mutat Res 512:121
Cavallo D, Ursini CL, Perniconi B, Francesco AD, Giglio M, Rubino FM, Marinaccio A, Iavicoli S (2005) Mutat Res 587:45
Wong WS (2005) Curr Opin Pharmacol 5:264
Sugita A, Ogawa H, Azuma M, Muto S, Honjo A, Yanagawa H, Nishioka Y, Tani K, Itai A, Sone S (2009) Int Arch Allergy Immunol 148:186
Andrianopoulos C, Stephanou G, Demopoulos NA (2006) Environ Mol Mutagen 47:169
Arencibia JM, Del Rio M, Bonnin A, Lopes R, Lemoine NR, Lopez-Barahona M (2005) Int J Oncol 27:1617
Csoka AB, Szyf M (2009) Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med Hypotheses 73(5):770–780
Unterberger A, Andrews SD, Weaver IC, Szyf M (2006) Mol Cell Biol 26:7575
Brambilla G, Martelli A (2006) Mutat Res 612:115
Park HJ, Lee SH, Son DJ, Oh KW, Kim KH, Song HS, Kim GJ, Oh GT, Yoon DY, Hong JT (2004) Arthritis Rheum 50:3504
Chouini-Lalanne N, Defais M, Paillous N (1998) Biochem Pharmacol 55:441
Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) Nature 447:178
Olaharski AJ, Ji Z, Woo JY, Lim S, Hubbard AE, Zhang L, Smith MT (2006) Toxicol Sci 93:341
Bezerra DP, Moura DJ, Rosa RM, de Vasconcellos MC, e Silva AC, de Moraes MO, Silveira ER, Lima MA, Henriques JA, Costa-Lotufo LV, Saffi J (2008) Mutat Res 652:164
Yin H, Baart E, Betzendahl I, Eichenlaub-Ritter U (1998) Mutagenesis 13:567
Lee MG, Wynder C, Schmidt DM, McCafferty DG, Shiekhattar R (2006) Chem Biol 13:563
Brambilla G, Mattioli F, Martelli A (2009) Toxicology 261:77
Author information
Authors and Affiliations
Corresponding author
Additional information
Our SVM genotoxicity virtual screening models can be accessed at http://bidd.nus.edu.sg/gtox/gtox.html.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kumar, P., Ma, X., Liu, X. et al. Effect of training data size and noise level on support vector machines virtual screening of genotoxic compounds from large compound libraries. J Comput Aided Mol Des 25, 455–467 (2011). https://doi.org/10.1007/s10822-011-9431-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-011-9431-3