Skip to main content

Advertisement

Log in

Novel isoquinolone PDK1 inhibitors discovered through fragment-based lead discovery

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Phosphoinositide-dependent kinase-1 (PDK1) is a critical enzyme in the PI3K/AKT pathway and to the activation of AGC family protein kinases, including S6K, SGK, and PKC. Dysregulation of this pathway plays a key role in cancer cell growth, survival and tumor angiogenesis. As such, inhibitors of PDK1 offer the promise of a new therapeutic modality for cancer treatment. Fragment based drug screening has recently become a viable entry point for hit identification. In this work, NMR spectroscopy fragment screening of PDK1 afforded novel chemotypes as orthogonal starting points from HTS screening hits. Compounds identified as hits by NMR spectroscopy were tested in a biochemical assay, and fragments with activity in both assays were clustered. The Pfizer compound file was mined via substructure and 2D similarity search, and the chemotypes were prioritized by ligand efficiency (LE), SAR mining, chemical attractiveness, and chemical enablement of promising vectors. From this effort, an isoquinolone fragment hit, 5 (IC50 870 μM, LE = 0.39), was identified as a novel, ligand efficient inhibitor of PDK1 and a suitable scaffold for further optimization. Initially in the absence of crystallographic data, a fragment growing approach efficiently explored four vectors of the isoquinolone scaffold via parallel synthesis to afford a compound with crystallographic data, 16 (IC50 41.4 μM, LE = 0.33). Subsequent lead optimization efforts provided 24 (IC50 1.8 μM, LE = 0.42), with greater than fivefold selectivity against other key pathway kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Ligand efficiency (LE) is defined as ΔG/Nnon-hydrogen atoms, where ΔG ≈ –RT ln IC50.

  2. Kinase-Glo Assay (Promega Corporation) detects amount of ATP remaining after kinase reaction is stopped, thereby indirectly measuring PDK1 mediated phosphorylation of peptide substrate with [PDKtide] = 8 μM, [ATP] = 5 μM, and [PDK1 enzyme] = 15 nM. Details are given in [18].

Abbreviations

PDK1:

Phosphoinositide-dependent kinase-1

PI3K:

Phosphoinositide 3-kinase

LE:

Ligand efficiency

HTS:

High throughput screening

MW:

Molecular weight

STD:

Saturation transfer difference

NO:

Nitrogen and oxygen count

TPSA:

Total polar surface area

HBD:

Hydrogen bond donor count

SSHE:

Substructure similarity hit expansion

References

  1. Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3:660–672

    Article  CAS  Google Scholar 

  2. Jahnke W, Erlanson DA (eds) (2006) Fragment-based approaches in drug discovery. Wiley, New York

    Google Scholar 

  3. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  CAS  Google Scholar 

  4. Congreve M, Murray CW, Carr R, Rees DC (2007) Fragment-based lead discovery. In: Macor JE (ed) Annual Reports in Medicinal Chemistry 42:431–448

  5. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51:3661–3680

    Article  CAS  Google Scholar 

  6. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431

    Article  Google Scholar 

  7. Peifer C, Alessi DR (2008) Small-molecule inhibitors of PDK1. Chem Med Chem 3:1810–1838

    CAS  Google Scholar 

  8. Mora A, Komander D, van Aalten DMF, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Cell Dev Biol 15:161–170

    Article  CAS  Google Scholar 

  9. Toker A, Newton AC (2000) Cellular signaling: pivoting around PDK-1. Cell 103:185–188

    Article  CAS  Google Scholar 

  10. Bayascas JR, Leslie NR, Parsons R, Fleming S, Alessi DR (2005) Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN+/- Mice. Curr Biol 15:1839–1846

    Article  CAS  Google Scholar 

  11. Angiolini M, Banfi P, Casale E, Casuscelli F, Fiorelli C, Saccardo MB, Silvagni M, Zuccotto F (2010) Structure-based optimization of potent PDK1 inhibitors. Bioorg Med Chem Lett 20:4095–4099

    Article  CAS  Google Scholar 

  12. Nittoli T, Dushin RG, Ingalls C, Cheung K, Floyd MB, Fraser H, Olland A, Hu Y, Grosu G, Han X, Arndt K, Guo B, Wissner A (2010) The identification of 8, 9-dimethoxy-5-(2-aminoalkoxy-pyridin-3-yl)-benzo[c][2,7]naphthyridin-4-ylamines as potent inhibitors of 3-phosphoinositide-dependent kinase-1 (PDK-1). Eur J Med Chem 45:1379–1386

    Article  CAS  Google Scholar 

  13. Stauffer F, Maira S-M, Furet P, García-Echeverría C (2008) Imidazo[4,5-c]quinolines as inhibitors of the PI3K/PKB-pathway. Bioorg Med Chem Lett 18:1027–1030

    Article  CAS  Google Scholar 

  14. Hubbard RE, Davis B, Chen I, Drysdale MJ (2007) The seeds approach: integrating fragments into drug discovery. Curr Top Med Chem 7:1568–1581

    Article  CAS  Google Scholar 

  15. Medina JR, Blackledge CW, Heerding DA, Campobasso N, Ward P, Briand J, Wright L, Axten JM (2010) Aminoindazole PDK1 Inhibitors: a case study in fragment-based drug discovery. ACS Med Chem Lett 1:439–442

    Article  CAS  Google Scholar 

  16. Medina JR, Becker CJ, Blackledge CW, Duquenne C, Feng Y, Grant SW, Heerding D, Li WH, Miller WH, Romeril SP, Scherzer D, Shu A, Bobko MA, Chadderton AR, Dumble M, Gardiner CM, Gilbert S, Liu Q, Rabindran SK, Sudakin V, Xiang H, Brady PG, Campobasso N, Ward P, Axten JM (2011) Structure-based design of potent and selective 3-phosphoinositide-dependent kinase-1 (PDK1) inhibitors. J Med Chem 54:1871–1895

    Google Scholar 

  17. Erlanson DA, Arndt JW, Cancilla MT, Cao K, Elling RA, English N, Friedman J, Hansen SK, Hession C, Joseph I, Kumaravel G, Lee W-C, Lind KE, McDowell RS, Miatkowski K, Nguyen C, Nguyen TB, Park S, Pathan N, Penny DM, Romanowski MJ, Scott D, Silvian L, Simmons RL, Tangonan BT, Yang W, Sun L (2011) Discovery of a potent and highly selective PDK1 inhibitor via fragment-based drug discovery. Bioorg Med Chem Lett 21:3078–3083

    Google Scholar 

  18. Stockman BJ, Kothe M, Kohls D, Weibley L, Connolly BJ, Sheils AL, Cao Q, Cheng AC, Yang L, Kamath AV, Ding Y-H, Charlton ME (2009) Identification of allosteric PIF-pocket ligands for PDK1 using NMR-based fragment screening and 1H–15N TROSY experiments. Chem Biol Drug Des 73:179–188

    Article  CAS  Google Scholar 

  19. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38:1784–1788

    Article  CAS  Google Scholar 

  20. http://accelrys.com/products/datasheets/accord-chemistry-cartridge.pdf

  21. Hajduk PJ (2006) Fragment-based drug design: how big is too big? J Med Chem 49:6972–6976

    Article  CAS  Google Scholar 

  22. Pipeline Pilot from Accelrys: http://www.accelrys.com/

  23. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol 2:317–324

    Article  CAS  Google Scholar 

  24. Gehlhaar DK, Bouzida D, Rejto PA (1999) Reduced dimensionality in ligand-protein structure prediction: covalent inhibitors of serine proteases and design of site-directed combinatorial libraries. In: Parrill AL, Reddy MR (eds) Rational drug design: novel methodology and practical applications. ACS Symposium Series, ACS Press, New York, 719:292–311

  25. Marrone TJ, Luty BA, Rose PW (2000) Discovering high-affinity ligands from the computationally predicted structures and affinities of small molecules bound to a target: a virtual screening approach. Perspect Drug Discov Des 20:209–230

    Article  CAS  Google Scholar 

  26. Fish PV, Barber CG, Brown DG, Butt R, Collis MG, Dickinson RP, Henry BT, Horne VA, Huggins JP, King E, O’Gara M, McCleverty D, McIntosh F, Phillips C, Webster R (2007) Selective urokinase-type plasminogen activator inhibitors. 4.1-(7-Sulfonamidoisoquinolinyl)guanidines. J Med Chem 50:2341–2351

    Article  CAS  Google Scholar 

  27. Lau WF, Withka JM, Hepworth D, Magee TV, Du YJ, Bakken GA, Miller MD, Hendsch ZS, Thanabal V, Kolodziej SA, Xing L, Hu Q, Narasimhan LS, Love R, Charlton ME, Hughes S, Van Hoorn WP, Mills JE (2011) Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics. J Comput-Aided Mol Des (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Catherine Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.C., Hu, Q., Lingardo, L. et al. Novel isoquinolone PDK1 inhibitors discovered through fragment-based lead discovery. J Comput Aided Mol Des 25, 689–698 (2011). https://doi.org/10.1007/s10822-011-9456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9456-7

Keywords

Navigation