Skip to main content
Log in

In silico prediction of acyl glucuronide reactivity

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted 13C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fung M, Thornton A, Mybeck K, Hornbuckle K, Muniz E (2001) Drug Inf J 35:293

    Google Scholar 

  2. Faed EM (1984) Drug Metab Dispos 15:1213

    CAS  Google Scholar 

  3. Regan SL, Maggs JL, Hammond TG, Lambert C, Williams DP, Park BK (2010) Biopharm Drug Dispos 31:367

    Article  CAS  Google Scholar 

  4. Baillie TA (2008) Chem Res Toxicol 21:129

    Article  Google Scholar 

  5. Guengerich F, MacDonald J (2007) Chem Res Toxicol 20:344

    Article  CAS  Google Scholar 

  6. Walgren J, Mitchell M, Thompson D (2005) Crit Rev Toxicol 35:325

    Article  CAS  Google Scholar 

  7. Koga T, Fujiwara R, Nakajima M, Yokoi T (2011) Drug Metab Dispos 39:54

    Article  CAS  Google Scholar 

  8. Sawamura R, Okudaira N, Watanabe K, Murai T, Kobayashi Y, Tachibana M, Ohnuki T, Masuda K, Honma H, Kurihara A, Okazaki O (2010) Drug Metab Dispos 38:1857

    Article  CAS  Google Scholar 

  9. Benet L, Spahn-Langguth H, Iwakawa S, Volland C, Mizuma T, Mayer S, Mutschler E, Lin E (1993) Life Sci 53:141

    Article  Google Scholar 

  10. Bolze S, Bromet N, Gay-Feutry C, Massiere F, Boulieu R, Hulot T (2002) Drug Metab Dispos 30:404

    Article  CAS  Google Scholar 

  11. Vanderhoeven S, Troke J, Tranter G, Wilson I, Nicholson J, Lindon J (2004) Xenobiotica 34:889

    Article  CAS  Google Scholar 

  12. Yoshioka T, Baba A (2009) Chem Res Toxicol 22:1559

    Article  CAS  Google Scholar 

  13. Bowkett ER, Harding JA, Maggs JL, Park BK, Perriea JA, Stachulski AV (2007) Tetrahedron 63:7596

    Article  CAS  Google Scholar 

  14. Wold S, Geladi P, Esbensen K, Öhman J (1987) J Chemom 1:41

    Article  CAS  Google Scholar 

  15. Verloop A (1987) The STERIMOL approach to drug design. Dekker, New York

  16. Neuvonen H, Neuvonen K (1999) J Chem Soc Perkin Trans 2:1497

    Google Scholar 

  17. Fröhlich J, Berger S (2008) Eur J Org Chem 9:1632

    Article  Google Scholar 

  18. Chimichi S, Boccalini M, Matteucci A, Kharlamov SV, Latypov SK, Sinyashin OG (2010) Magn Reson Chem 48:607

    CAS  Google Scholar 

  19. Smith SG, Goodman JM (2010) J Am Chem Soc 132:12946

    Article  CAS  Google Scholar 

  20. Sarotti AM, Pellegrinet SC (2009) J Org Chem 74:7254

    Article  CAS  Google Scholar 

  21. Jain R, Bally T, Rablen PR (2009) J Org Chem 74:4017

    Article  CAS  Google Scholar 

  22. Stachulsky A, Harding J, Lindon J, Maggs J, Park K, Wilson I (2006) J Med Chem 49:6931

    Article  Google Scholar 

  23. Hasegawa H, Akira K, Shinohara Y, Kasuya Y, Hashimoto T (2001) Biol Pharm Bull 24:852

    Article  CAS  Google Scholar 

  24. Baba A, Yoshioka T (2009) Chem Res Toxicol 22:1998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Natalie de Sousa for HPLC purification of the biosynthetic AGs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Luker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, T., Lewis, R., Luker, T. et al. In silico prediction of acyl glucuronide reactivity. J Comput Aided Mol Des 25, 997–1005 (2011). https://doi.org/10.1007/s10822-011-9479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9479-0

Keywords

Navigation