Skip to main content
Log in

Elaborate ligand-based modeling reveal new submicromolar Rho kinase inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Rho Kinase (ROCKII) has been recently implicated in several cardiovascular diseases prompting several attempts to discover and optimize new ROCKII inhibitors. Towards this end we explored the pharmacophoric space of 138 ROCKII inhibitors to identify high quality pharmacophores. The pharmacophoric models were subsequently allowed to compete within quantitative structure–activity relationship (QSAR) context. Genetic algorithm and multiple linear regression analysis were employed to select an optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of accessing self-consistent QSAR of optimal predictive potential (r 77 = 0.84, F = 18.18, r 2LOO  = 0.639, r 2PRESS against 19 external test inhibitors = 0.494). Two orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least two binding modes accessible to ligands within ROCKII binding pocket. Receiver operating characteristic (ROC) curve analyses established the validity of QSAR-selected pharmacophores. Moreover, the successful pharmacophores models were found to be comparable with crystallographically resolved ROCKII binding pocket. We employed the pharmacophoric models and associated QSAR equation to screen the national cancer institute (NCI) list of compounds Eight submicromolar ROCKII inhibitors were identified. The most potent gave IC50 values of 0.7 and 1.0 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shimokawa H, Rashid M (2007) Trends Pharmacol Sci 28:296–302

    Article  CAS  Google Scholar 

  2. Olson K (2008) Curr Opin Cell Biol 20:242–248

    Article  CAS  Google Scholar 

  3. Kumar R, Singh V, Baker K (2007) J Mol Cell Cardiol 42:1–11

    Article  CAS  Google Scholar 

  4. Muller B, Mack H, Teusch N (2005) Nat Rev Drug Discov 4:387–399

    Article  Google Scholar 

  5. Offermanns S, Wettschureck N (2002) J Mol Med 80:629–638

    Article  Google Scholar 

  6. Dong M, Bryan P, James K, Yip Y-Y, Gabriel WK, Yu C (2010) Drug Discov Today 15:622–629

    Article  CAS  Google Scholar 

  7. Takami A, Iwakubo M, Okada Y, Kawata H, Takahashi N, Shindo K, Kimura K, Tagami Y, Miyake M, Fukushima K, Inagaki M, Amano M, Kaibuchi K, Iijima H (2004) Bioorg Med Chem Lett 12:2115–2137

    Article  CAS  Google Scholar 

  8. Iwakubo M, Takami A, Okada Y, Kawata T, Tagami Y, Ohashi H, Sato M, Sugiyama T, Fukushima K, Iijima H (2007) Bioorg Med Chem Lett 15:350–364

    Article  CAS  Google Scholar 

  9. Iwakubo M, Takami A, Okada Y, Kawata T, Tagami Y, Sato M, Sugiyama T, Fukushima K, Shinichiro T, Kaibuchib K, Iijima H (2007) Bioorg Med Chem Lett 15:1022–1033

    Article  CAS  Google Scholar 

  10. Ho K, Beasley J, Belanger L, Black D, Chan J, Dunn D, Hu B, Klon A, Kultgen S, Ohlmeyer M, Parlato S, Ray P, Pham Q, Rong Y, Roughton A, Walker T, Wright J, Xu K, Xu Y, Zhang L, Webba M (2009) Bioorg Med Chem Lett 19:6027–6031

    Article  CAS  Google Scholar 

  11. Yamaguchi H, Miwa Y, Kasa M, Kitano K, Amano M, Kaibuchi K, Hakoshima T (2006) J Biochem 140:305–311

    Article  CAS  Google Scholar 

  12. Wen W, Liu W, Yan J, Zhang M. The C1 domain of ROCK II. Protein data bank code: 2ROW

  13. Wen W, Liu W, Yan J, Zhang M. The split PH domain of ROCK II. Protein data bank code: 2ROV

  14. Yamaguchi H, Kasa M, Amano M, Kaibuchi K, Hakoshima T (2006) Structure 14:589–600

    Article  CAS  Google Scholar 

  15. Beeley NRA, Sage C (2003) Targets 2:19–25

    Article  CAS  Google Scholar 

  16. Klebe G (2006) Drug Discov Today 11:580–594

    Article  CAS  Google Scholar 

  17. Steuber H, Zentgraf M, Gerlach C, Sotriffer CA, Heine A, Klebe G (2006) J Mol Biol 363:174–187

    Article  CAS  Google Scholar 

  18. Stubbs MT, Reyda S, Dullweber F, Moller M, Klebe G, Dorsch D, Mederski W, Wurziger H (2002) ChemBioChem 3:246–249

    Article  CAS  Google Scholar 

  19. DePristo MA, de Bakker PIW, Blundell TL (2004) Structure 12:831–838

    Article  CAS  Google Scholar 

  20. Gohda K, Hakoshima T (2008) J Comput Aid Mol Des 22(11):789–797

    Article  CAS  Google Scholar 

  21. Taha MO, Bustanji Y, Al-Ghussein MAS, Mohammad M, Zalloum H, Al-Masri IM, Atallah N (2008) J Med Chem 51:2062–2077

    Article  CAS  Google Scholar 

  22. Taha MO, Atallah N, Al-Bakri AG, Paradis-Bleau C, Zalloum H, Younis K, Levesque RC (2008) Bioorg Med Chem 16:1218–1235

    Article  CAS  Google Scholar 

  23. Taha MO, Bustanji Y, Al-Bakri AG, Yousef M, Zalloum WA, Al-Masri IM, Atallah N (2007) J Mol Graph Model 25:870–884

    Article  CAS  Google Scholar 

  24. Al-masri IM, Mohammad MK, Taha MO (2008) Chem Med Chem 3:1763–1779

    CAS  Google Scholar 

  25. Taha MO, Dahabiyeh LA, Bustanji Y, Zalloum H, Saleh S (2008) J Med Chem 51:6478–6494

    Article  CAS  Google Scholar 

  26. Al-Nadaf A, Abu Sheikha G, Taha MO (2010) Bioorg Med Chem 18:3088–3115

    Article  CAS  Google Scholar 

  27. Abu-Hammad AM, Taha MO (2009) J Chem Inf Model 49:978–996

    Article  CAS  Google Scholar 

  28. Abu Khalaf R, Abu Sheikha G, Bustanji Y, Taha MO (2010) Eur J Med Chem 45:1598–1617

    Article  CAS  Google Scholar 

  29. Al-Sháer M, Taha MO (2010) Eur J Med Chem 45:4316–4330

    Article  Google Scholar 

  30. Al-Sháer M, Taha MO (2010) J Chem Inf Model 50:1706–1723

    Article  Google Scholar 

  31. Taha MO, Trarairah M, Zalloum H, Abu Sheikha G (2010) J Mol Graph Model 28:383–400

    Article  CAS  Google Scholar 

  32. Abu Khalaf R, Abdula AM, Mubarak M, Taha MO (2011) J Mol Model 17:443–482

    Google Scholar 

  33. Abdula AM, Abu Khalaf R, Mubarak M, Taha M (2011) J Comput Chem 3:463–482

    Article  Google Scholar 

  34. Tamura M, Nakao H, Yoshizaki H, Shiratsuchi M, Shigyo H, Yamada H, Ozawa T, Totsuka T, Hidaka H (2005) Biochim Biophys Acta 1754:245–252

    CAS  Google Scholar 

  35. Discovery Studio version 2.5 (DS 2.5) User Manual (2009) Accelrys Inc, San Diego

  36. Van Drie JH (2003) Curr Pharm Des 9:1649–1664

    Article  Google Scholar 

  37. Poptodorov K, Luu T, Langer T, Hoffmann R (2006) In methods and principles in medicinal chemistry. In: Hoffmann RD (ed) Pharmacophores and Pharmacophores Searches, vol 2. Wiley-VCH, Weinheim, pp 17–47

    Google Scholar 

  38. CERIUS2 4.10 LigandFit User Manual (2000) Accelrys Inc., San Diego

  39. Discovery Studio 2.5.5 User Guide (2010) Accelrys Inc., San Diego

  40. CATALYST 4.11 Users’ Manual (2005) Accelrys Software Inc San Diego, CA

  41. Sutter J, Güner O, Hoffmann R, Li H, Waldman M (2000) In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 501–511

  42. Kurogi Y, Güner OF (2001) Curr Med Chem 8:1035–1055

    CAS  Google Scholar 

  43. Poptodorov K, Luu T, Langer T, Hoffmann R (2006) In: Hoffmann RD (ed) Methods and principles in medicinal chemistry. Pharmacophores and Pharmacophores Searches, vol 2. Wiley-VCH, Weinheim, pp 17–47

  44. Li H, Sutter J, Hoffmann R (2000) In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 173–189

  45. Bersuker IB, Bahçeci S, Boggs JE (2000) In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 457–473

  46. Fischer R (1966) The principle of experimentation illustrated by a psycho-physical. ExpeHafner Publishing Co, 8th ed. Hafner Publishing, New York Chapter II

  47. Krovat EM, Langer T (2003) J Med Chem 46:716–726

    Article  CAS  Google Scholar 

  48. CERIUS2 (2005) QSAR Users’ Manual, Version 4.10; Accelrys Inc., San Diego, pp 43–88, 221–235, 237–250

  49. Verdonk ML, Marcel L, Berdini V, Hartshorn MJ, Mooij WTM, Murray CW, Taylor RD, Watson P (2004) J Chem Inf Comput Sci 44:793–806

    Article  CAS  Google Scholar 

  50. Kirchmair J, Markt P, Distinto S, Wolber G, Langer T (2008) J Comput Aided Mol 22:213–228

    Article  CAS  Google Scholar 

  51. Irwin JJ, Shoichet BK (2005) J Chem Inf Comput Sci 45:177–182

    Article  CAS  Google Scholar 

  52. Triballeau N, Acher F, Brabet I, Pin J-P, Bertrand H-O (2005) J Med Chem 48:2534–2547

    Article  CAS  Google Scholar 

  53. Jacobsson M, Liden P, Stjernschantz E, Bostroem H, Norinder U (2003) J Med Chem 46:5781–5789

    Article  CAS  Google Scholar 

  54. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 46:3–26

    Article  CAS  Google Scholar 

  55. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  Google Scholar 

  56. CycLex, Rho-Kinase Assay Kit (Cat# CY-1160) Users’ Manual (2009) CycLex Co, Ltd, Ina, Nagano, Japan

  57. Li H, Sutter J, Hoffmann R (2000) In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 173–189

  58. Sutter J, Güner O, Hoffmann R, Li H, Waldman M (2000) In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 501–511

  59. Bersuker IB, Bahçeci S, Boggs JE (2000) In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 457–473

  60. Ramsey LF, Schafer WD (1997) The Statistical Sleuth, 1st edn. Wadsworth Publishing Company, Belmont CA

    Google Scholar 

  61. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21:289–307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was partially sponsored by the Faculty of Graduate Studies (This work is part of PhD. Thesis of Rand Shahin). The authors thank the Deanship of Scientific Research and Hamdi-Mango Center for Scientific Research at the University of Jordan for their generous funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutasem O. Taha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2513 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahin, R., AlQtaishat, S. & Taha, M.O. Elaborate ligand-based modeling reveal new submicromolar Rho kinase inhibitors. J Comput Aided Mol Des 26, 249–266 (2012). https://doi.org/10.1007/s10822-011-9509-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9509-y

Keywords