Skip to main content
Log in

Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

SAMPL3 fragment based virtual screening challenge provides a valuable opportunity for researchers to test their programs, methods and screening protocols in a blind testing environment. We participated in SAMPL3 challenge and evaluated our virtual fragment screening protocol, which involves RosettaLigand as the core component by screening a 500 fragments Maybridge library against bovine pancreatic trypsin. Our study reaffirmed that the real test for any virtual screening approach would be in a blind testing environment. The analyses presented in this paper also showed that virtual screening performance can be improved, if a set of known active compounds is available and parameters and methods that yield better enrichment are selected. Our study also highlighted that to achieve accurate orientation and conformation of ligands within a binding site, selecting an appropriate method to calculate partial charges is important. Another finding is that using multiple receptor ensembles in docking does not always yield better enrichment than individual receptors. On the basis of our results and retrospective analyses from SAMPL3 fragment screening challenge we anticipate that chances of success in a fragment screening process could be increased significantly with careful selection of receptor structures, protein flexibility, sufficient conformational sampling within binding pocket and accurate assignment of ligand and protein partial charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534

    Article  CAS  Google Scholar 

  2. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431. doi:10.1016/S1359-6446(04)03069-7

    Article  Google Scholar 

  3. Artis DR, Lin JJ, Zhang C, Wang W, Mehra U, Perreault M, Erbe D, Krupka HI, England BP, Arnold J, Plotnikov AN, Marimuthu A, Nguyen H, Will S, Signaevsky M, Kral J, Cantwell J, Settachatgull C, Yan DS, Fong D, Oh A, Shi S, Womack P, Powell B, Habets G, West BL, Zhang KY, Milburn MV, Vlasuk GP, Hirth KP, Nolop K, Bollag G, Ibrahim PN, Tobin JF (2009) Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proc Natl Acad Sci USA 106(1):262–267. doi:10.1073/pnas.0811325106

    Article  CAS  Google Scholar 

  4. Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2005) A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat Biotechnol 23(2):201–207. doi:10.1038/nbt1059

    Article  CAS  Google Scholar 

  5. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS, Fong D, Zhu YL, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim SH, Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105(8):3041–3046. doi:10.1073/pnas.0711741105

    Article  CAS  Google Scholar 

  6. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680. doi:10.1021/jm8000373

    Article  CAS  Google Scholar 

  7. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6(3):211–219. doi:10.1038/nrd2220

    Article  CAS  Google Scholar 

  8. Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1(3):187–192. doi:10.1038/nchem.217

    Article  CAS  Google Scholar 

  9. de Kloe GE, Bailey D, Leurs R, de Esch IJ (2009) Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today 14(13–14):630–646. doi:10.1016/j.drudis.2009.03.009

    Article  Google Scholar 

  10. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, Burton EA, Wong B, Tsang G, West BL, Powell B, Shellooe R, Marimuthu A, Nguyen H, Zhang KY, Artis DR, Schlessinger J, Su F, Higgins B, Iyer R, D’Andrea K, Koehler A, Stumm M, Lin PS, Lee RJ, Grippo J, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, Chapman PB, Flaherty KT, Xu X, Nathanson KL, Nolop K (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467(7315):596–599. doi:10.1038/nature09454

    Article  CAS  Google Scholar 

  11. Zartler ER, Mo H (2007) Practical aspects of NMR-based fragment discovery. Curr Top Med Chem 7(16):1592–1599

    Article  CAS  Google Scholar 

  12. Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) Fragment-based lead discovery using X-ray crystallography. J Med Chem 48(2):403–413. doi:10.1021/jm0495778

    Article  CAS  Google Scholar 

  13. Neumann T, Junker HD, Schmidt K, Sekul R (2007) SPR-based fragment screening: advantages and applications. Curr Top Med Chem 7(16):1630–1642

    Article  CAS  Google Scholar 

  14. Kolb P, Ferreira RS, Irwin JJ, Shoichet BK (2009) Docking and chemoinformatic screens for new ligands and targets. Curr Opin Biotechnol 20(4):429–436. doi:10.1016/j.copbio.2009.08.003

    Article  CAS  Google Scholar 

  15. Murray CW, Callaghan O, Chessari G, Cleasby A, Congreve M, Frederickson M, Hartshorn MJ, McMenamin R, Patel S, Wallis N (2007) Application of fragment screening by X-ray crystallography to beta-secretase. J Med Chem 50(6):1116–1123. doi:10.1021/jm0611962

    Article  CAS  Google Scholar 

  16. Huang JW, Zhang Z, Wu B, Cellitti JF, Zhang X, Dahl R, Shiau CW, Welsh K, Emdadi A, Stebbins JL, Reed JC, Pellecchia M (2008) Fragment-based design of small molecule X-linked inhibitor of apoptosis protein inhibitors. J Med Chem 51(22):7111–7118. doi:10.1021/jm8006992

    Article  CAS  Google Scholar 

  17. Chen Y, Shoichet BK (2009) Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat Chem Biol 5(5):358–364. doi:10.1038/nchembio.155

    Article  CAS  Google Scholar 

  18. Teotico DG, Babaoglu K, Rocklin GJ, Ferreira RS, Giannetti AM, Shoichet BK (2009) Docking for fragment inhibitors of AmpC beta-lactamase. Proc Natl Acad Sci USA 106(18):7455–7460. doi:10.1073/pnas.0813029106

    Article  CAS  Google Scholar 

  19. Hubbard RE, Chen I, Davis B (2007) Informatics and modeling challenges in fragment-based drug discovery. Curr Opin Drug Discov Dev 10(3):289–297

    CAS  Google Scholar 

  20. Babaoglu K, Shoichet BK (2006) Deconstructing fragment-based inhibitor discovery. Nat Chem Biol 2(12):720–723. doi:10.1038/nchembio831

    Article  CAS  Google Scholar 

  21. May A, Zacharias M (2008) Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: evaluation on kinase inhibitor cross docking. J Med Chem 51(12):3499–3506. doi:10.1021/jm800071v

    Article  CAS  Google Scholar 

  22. Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65(3):538–548. doi:10.1002/prot.21086

    Article  CAS  Google Scholar 

  23. Nabuurs SB, Wagener M, de Vlieg J (2007) A flexible approach to induced fit docking. J Med Chem 50(26):6507–6518. doi:10.1021/jm070593p

    Article  CAS  Google Scholar 

  24. Anderson AC, O’Neil RH, Surti TS, Stroud RM (2001) Approaches to solving the rigid receptor problem by identifying a minimal set of flexible residues during ligand docking. Chem Biol 8(5):445–457

    Article  CAS  Google Scholar 

  25. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18(2):178–184. doi:10.1016/j.sbi.2008.01.004

    Article  CAS  Google Scholar 

  26. Davis IW, Baker D (2009) RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 385(2):381–392. doi:10.1016/j.jmb.2008.11.010

    Article  CAS  Google Scholar 

  27. Davis IW, Raha K, Head MS, Baker D (2009) Blind docking of pharmaceutically relevant compounds using RosettaLigand. Protein Sci 18(9):1998–2002. doi:10.1002/pro.192

    Article  CAS  Google Scholar 

  28. Kawatkar S, Wang H, Czerminski R, Joseph-McCarthy D (2009) Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using Glide. J Comput Aided Mol Des 23:527–539. doi:10.1007/s10822-009-9281-4

    Article  CAS  Google Scholar 

  29. Sandor M, Kiss R, Keseru GM (2010) Virtual fragment docking by Glide: a validation study on 190 protein-fragment complexes. J Chem Inf Model 50(6):1165–1172. doi:10.1021/ci1000407

    Article  CAS  Google Scholar 

  30. Skillman G, Geballe M, Nicholls A (2012) The SAMPL3 challenge. J Comput Aided Mol Des, this issue

  31. OpenEye Scientific Software, Inc., Santa Fe, NM, USA. www.eyesopen.com

  32. Peat TS, Newman J (2012) High throughput fragment screening-Trypsin. J Comput Aided Mol Des, this issue

  33. Newman J, Fazio VJ, Caradoc-Davies TT, Branson K, Peat TS (2009) Practical aspects of the SAMPL challenge: providing an extensive experimental data set for the modeling community. J Biomol Screen 14(10):1245–1250. doi:10.1177/1087057109348220

    Article  CAS  Google Scholar 

  34. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  35. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8(19):876–877

    Article  Google Scholar 

  36. Molecular Operating Environment (MOE), version 2010.10; Chemical Computing Group Inc.: Montreal, QC, Canada, 2010

  37. Labute P (2009) Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 75(1):187–205. doi:10.1002/prot.22234

    Article  CAS  Google Scholar 

  38. Labute P (2010) LowModeMD—implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J Chem Inf Model 50(5):792–800. doi:10.1021/ci900508k

    Article  CAS  Google Scholar 

  39. Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20(7):720–729. doi:10.1002/(sici)1096-987x(199905)20:7<720::aid-jcc7>3.0.co;2-x

    Google Scholar 

  40. Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47(1):195–207. doi:10.1021/ci600342e

    Article  CAS  Google Scholar 

  41. Rogers DJ, Tanimoto TT (1960) A computer program for classifying plants. Science 132(3434):1115–1118. doi:10.1126/science.132.3434.1115

    Article  CAS  Google Scholar 

  42. Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47(12):2977–2980. doi:10.1021/jm030580l

    Article  CAS  Google Scholar 

  43. Wang R, Fang X, Lu Y, Yang CY, Wang S (2005) The PDBbind database: methodologies and updates. J Med Chem 48(12):4111–4119. doi:10.1021/jm048957q

    Article  CAS  Google Scholar 

  44. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinforma 12:77. doi:10.1186/1471-2105-12-77

    Article  Google Scholar 

  45. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  46. Bottegoni G, Rocchia W, Rueda M, Abagyan R, Cavalli A (2011) Systematic exploitation of multiple receptor conformations for virtual ligand screening. PLoS One 6(5):e18845. doi:10.1371/journal.pone.0018845

  47. Craig IR, Essex JW, Spiegel K (2010) Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments. J Chem Inf Model 50(4):511–524. doi:10.1021/ci900407c

    Article  CAS  Google Scholar 

  48. Huang SY, Zou X (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins 66(2):399–421. doi:10.1002/prot.21214

    Article  CAS  Google Scholar 

  49. Rao S, Sanschagrin PC, Greenwood JR, Repasky MP, Sherman W, Farid R (2008) Improving database enrichment through ensemble docking. J Comput Aided Mol Des 22(9):621–627. doi:10.1007/s10822-008-9182-y

    Article  CAS  Google Scholar 

  50. Rueda M, Bottegoni G, Abagyan R (2010) Recipes for the selection of experimental protein conformations for virtual screening. J Chem Inf Model 50(1):186–193. doi:10.1021/ci9003943

    Article  CAS  Google Scholar 

  51. Bolstad ES, Anderson AC (2008) In pursuit of virtual lead optimization: the role of the receptor structure and ensembles in accurate docking. Proteins 73(3):566–580. doi:10.1002/prot.22081

    Article  CAS  Google Scholar 

  52. Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32(4):742–755. doi:10.1002/jcc.21643

    Article  CAS  Google Scholar 

  53. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641. doi:10.1002/jcc.10128

    Article  CAS  Google Scholar 

  54. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36(22):3219–3228

    Article  CAS  Google Scholar 

  55. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8(3):195–202. doi:10.1002/prot.340080302

    Article  CAS  Google Scholar 

  56. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10(4):293–304

    Article  CAS  Google Scholar 

  57. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662. doi:10.1002/(sici)1096-987x(19981115)19:14<1639:aid-jcc10>3.0.co;2-b

    Article  CAS  Google Scholar 

  58. Neudert G, Klebe G (2011) DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes. J Chem Inf Model. doi:10.1021/ci200274q

  59. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295(2):337–356

    Article  CAS  Google Scholar 

  60. Shi Y, Jiao D, Schnieders MJ, Ren P (2009) Trypsin-ligand binding free energy calculation with AMOEBA. Conf Proc IEEE Eng Med Biol Soc 2009:2328–2331. doi:10.1109/IEMBS.2009.5335108

    Google Scholar 

Download references

Acknowledgments

We thank RIKEN Integrated Cluster of Clusters (RICC) at RIKEN for the supercomputing resources used for the study. We are grateful to Dr. Tom Peat for sharing the crystal structures of trypsin bound with active fragments prior to publication. We thank members of our lab for help and discussions. We acknowledge the Initiative Research Unit program from RIKEN, Japan for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam Y. J. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Zhang, K.Y.J. Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge. J Comput Aided Mol Des 26, 603–616 (2012). https://doi.org/10.1007/s10822-011-9523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9523-0

Keywords

Navigation