Abstract
An empirical correction to density functional theory (DFT) has been developed in this study. The approach, called correlation corrected atomization–dispersion (CCAZD), involves short- and long-range terms. Short-range correction consists of bond (1,2-) and angle (1,3-) interactions, which remedies the deficiency of DFT in describing the proto-branching stabilization effects. Long-range correction includes a Buckingham potential function aiming to account for the dispersion interactions. The empirical corrections of DFT were parameterized to reproduce reported ΔH f values of the training set containing alkane, alcohol and ether molecules. The ΔH f of the training set molecules predicted by the CCAZD method combined with two different DFT methods, B3LYP and MPWB1K, with a 6-31G* basis set agreed well with the experimental data. For 106 alkane, alcohol and ether compounds, the average absolute deviations (AADs) in ΔH f were 0.45 and 0.51 kcal/mol for B3LYP- and MPWB1K-CCAZD, respectively. Calculations of isomerization energies, rotational barriers and conformational energies further validated the CCAZD approach. The isomerization energies improved significantly with the CCAZD treatment. The AADs for 22 energies of isomerization reactions were decreased from 3.55 and 2.44 to 0.55 and 0.82 kcal/mol for B3LYP and MPWB1K, respectively. This study also provided predictions of MM4, G3, CBS-QB3 and B2PLYP-D for comparison. The final test of the CCAZD approach on the calculation of the cellobiose analog potential surface also showed promising results. This study demonstrated that DFT calculations with CCAZD empirical corrections achieved very good agreement with reported values for various chemical reactions with a small basis set as 6-31G*.




Similar content being viewed by others
References
Tirado-Rives J, Jorgensen WL (2008) J Chem Theor Comput 4:297–306
Wodrich MD, Wannere CS, Mo Y, Jarowski PD, Houk KN, Schleyer PvR (2007) Chem Eur J 13:7731–7744
Hobza P, Sponer J, Reschel T (1995) J Comput Chem 16:1315–1325
Tsuzuki S, Luthi HP (2001) J Chem Phys 114:3949–3957
van MT, Gdanitz RJ (2002) J Chem Phys 116:9620–9623
Cerny J, Hobza P (2005) Phys Chem Chem Phys 7:1624–1626
Grimme S (2004) J Comput Chem 25:1463–1473
Elstner M, Hobza P, Frauenheim T, Suhai Sn, Kaxiras E (2001) J Chem Phys 114:5149–5155
Reha D, Kabeláč M, Ryjáček F, Šponer J, Šponer JE, Elstner M et al (2002) J Am Chem Soc 124:3366–3376
Wu Q, Yang W (2002) J Chem Phys 116:515–524
Zimmerli U, Parrinello M, Koumoutsakos P (2004) J Chem Phys 120:2693–2699
Grimme S (2006) J Comput Chem 27:1787–1799
Ducere J-M, Cavallo L (2007) J Phys Chem B 111:13124–13134
Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397–3406
Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620
Mackie ID, DiLabio GA (2008) J Phys Chem A 112:10968–10976
Wodrich MD, Jana DF, Schleyer PvR, Corminboeuf Cm (2008) J Phys Chem A 112:11495–11500
Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104/154101–154104/154119
Huenerbein R, Schirmer B, Moellmann J, Grimme S (2010) Phys Chem Chem Phys 12:6940–6948
Lii J-H, Allinger NL (2009) J Mex Chem Soc 53:96–107
Shamov GA, Budzelaar PHM, Schreckenbach G (2010) J Chem Theor Comput 6:477–490
Allinger NL, Chen K, Lii J-H (1996) J Comput Chem 17:642–668
Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92:4796–4801
Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776
Ochterski JW, Petersson GA, Montgomery JA Jr (1996) J Chem Phys 104:2598–2619
Grimme S (2006) J Chem Phys 124:034108/034101–034108/034116
Becke AD (1993) J Chem Phys 98:5648–5652
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789
Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918
Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650–7657
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2003) G03. Revision B.05 edn. Gaussian, Inc., Pittsburgh
Lii J-H, Liao F-X, Hsieh H-Y, Hu C-H (2010) J Phys Chem A 114:12334–12344
Labanowski J, Schmitz L, Chen K-H, Allinger NL (1998) J Comput Chem 19:1421–1430
Allinger NL (1977) J Am Chem Soc 99:8127–8134
Allinger NL, Yuh YH, Lii J-H (1989) J Am Chem Soc 111:8551–8566
Allinger NL, Chen K, Lii J-H (1996) J Comput Chem 17:642–668
Bondi A (1964) J Phys Chem 68:441–451
CCAZD program reads Gaussian Formchk file (.fchk) and computes CCAZD energy correction for B3LYP/6-31G* and MPWB1K/6-31G* based on the given structural information. For the request of the program, please contact authors at jhrobert.lii@gmail.com or chingkth@cc.ncue.edu.tw
Afeefy HY, Liebman JF, Stein SE (2005) Neutral thermochemical data. In Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST standard reference database number 69, June 2005. National Institute of Standards and Technology, Gaithersburg, 20899. http://webbook.nist.gov
French AD, Johnson GP (2004) Cellulose (Dordrecht, Neth) 11:449–462
Lii J-H, Chen K-H, Johnson GP, French AD, Allinger NL (2005) Carbohydr Res 340:853–862
Allinger NL, Chen K-H, Lii J-H, Durkin KA (2003) J Comput Chem 24:1447–1472
Lii J-H, Chen K-H, Durkin KA, Allinger NL (2003) J Comput Chem 24:1473–1489
Lii J-H, Chen K-H, Grindley TB, Allinger NL (2003) J Comput Chem 24:1490–1503
Li AH-T, Chao SD (2009) J Mol Struct THEOCHEM 897:90–94
Curtiss LA, Frurip DJ, Blander M (1979) J Chem Phys 71:2703–2711
Klopper W, van Duijneveldt-van de Rijdt JGCM, van Duijneveldt FB (2000) Phys Chem Chem Phys 2:2227–2234
Jursic BS (1999) J Mol Struct THEOCHEM 466:203–209
Riley KE, Hobza P (2007) J Phys Chem A 111:8257–8263
Hirota E, Endo Y, Saito S, Duncan JL (1981) J Mol Spectrosc 89:285–295
Allinger NL, Fermann JT, Allen WD, Schaefer HF III (1997) J Chem Phys 106:5143–5150
Lees RM, Baker JG (1968) J Chem Phys 48:5299–5318
Barrow GM (1952) J Chem Phys 20:1739–1744
Durig JR, Bucy WE, Wurrey CJ, Carreira LA (1975) J Phys Chem 79:988–993
Murphy WF, Fernandez-Sanchez JM, Raghavachari K (1991) J Phys Chem 95:1124–1139
Johnson WS, Bauer VJ, Margrave JL, Frisch MA, Dreger LH, Hubbard WN (1961) J Am Chem Soc 83:606–614
Kakhiani K, Lourderaj U, Hu W, Birney D, Hase WL (2009) J Phys Chem A 113:4570–4580
Abdurakhmanov AA, Ragimova RA, Imanov LM (1970) Phys Lett A 32:123–124
Hirsch JA (1967) In: Allinger NL, Eliel EL (eds) Topics in stereochemistry. Wiley Interscience, New York
Acknowledgments
The authors are indebted to Professor Norman L. Allinger for his advice and comments on this manuscript. The authors also thank the National Science Council of Taiwan, Republic of China, for support of this work, and the National Center for High-Performance Computing for computer time and facilities.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
10822_2011_9534_MOESM1_ESM.docx
Supporting Information Available: The complete lists (Tables 1S and 2S) and the calculated enthalpies of formation (Tables 3S and 4S) of the training-set molecules are available on Internet at http://www.springerlink.com/content/102928/. (DOCX 122 kb)
Rights and permissions
About this article
Cite this article
Lii, JH., Hu, CH. An improved theoretical approach to the empirical corrections of density functional theory. J Comput Aided Mol Des 26, 199–213 (2012). https://doi.org/10.1007/s10822-011-9534-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-011-9534-x