Skip to main content

Advertisement

Log in

Are predefined decoy sets of ligand poses able to quantify scoring function accuracy?

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Due to the large number of different docking programs and scoring functions available, researchers are faced with the problem of selecting the most suitable one when starting a structure-based drug discovery project. To guide the decision process, several studies comparing different docking and scoring approaches have been published. In the context of comparing scoring function performance, it is common practice to use a predefined, computer-generated set of ligand poses (decoys) and to reevaluate their score using the set of scoring functions to be compared. But are predefined decoy sets able to unambiguously evaluate and rank different scoring functions with respect to pose prediction performance? This question arose when the pose prediction performance of our piecewise linear potential derived scoring functions (Korb et al. in J Chem Inf Model 49:84–96, 2009) was assessed on a standard decoy set (Cheng et al. in J Chem Inf Model 49:1079–1093, 2009). While they showed excellent pose identification performance when they were used for rescoring of the predefined decoy conformations, a pronounced degradation in performance could be observed when they were directly applied in docking calculations using the same test set. This implies that on a discrete set of ligand poses only the rescoring performance can be evaluated. For comparing the pose prediction performance in a more rigorous manner, the search space of each scoring function has to be sampled extensively as done in the docking calculations performed here. We were able to identify relative strengths and weaknesses of three scoring functions (ChemPLP, GoldScore, and Astex Statistical Potential) by analyzing the performance for subsets of the complexes grouped by different properties of the active site. However, reasons for the overall poor performance of all three functions on this test set compared to other test sets of similar size could not be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nat Drug Dis 3:935–949

    Article  CAS  Google Scholar 

  2. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin ThE (1982) J Mol Biol 161:269–288

    Article  CAS  Google Scholar 

  3. von Korff M, Freyss J, Sander T (2009) J Chem Inf Model 49:209–231

    Article  Google Scholar 

  4. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) J Chem Inf Model 49:1455–1474

    Article  CAS  Google Scholar 

  5. Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Proteins 57:225–242

    Article  CAS  Google Scholar 

  6. Krovat EM, Steindl T, Langer T (2005) Curr Comput Aided Drug Des 1:93–102

    Article  CAS  Google Scholar 

  7. Perola E, Walters WP, Charifson PS (2004) Proteins 56:235–249

    Article  CAS  Google Scholar 

  8. Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49:6789–6891

    Article  CAS  Google Scholar 

  9. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE (2009) J Chem Inf Model 49:444–460

    Article  CAS  Google Scholar 

  10. Cheng T, Li X, Liu Z, Wang R (2009) J Chem Inf Model 49:1079–1093

    Article  CAS  Google Scholar 

  11. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2005) J Med Chem 49(20):5912–5931

    Article  Google Scholar 

  12. Englebienne P, Moitessier N (2009) J Chem Inf Model 49:1568–1580

    Article  CAS  Google Scholar 

  13. Corbeil CR, Moitessier N (2009) J Chem Inf Model 49:997–1009

    Article  CAS  Google Scholar 

  14. Chikji A, Bensegueni A (2008) J Proteomics Bioinform 1:161–165

    Article  Google Scholar 

  15. Li X, Li Y, Cheng T, Liu Z, Wang R (2010) J Comput Chem 31:2109–2125

    Article  Google Scholar 

  16. Korb O, Stützle T, Exner TE (2009) J Chem Inf Model 49:84–96

    Article  CAS  Google Scholar 

  17. Korb O, Stützle T, Exner TE (2006) Lect Notes Comput Sci 4150:247–258

    Article  Google Scholar 

  18. Korb O, Stützle T, Exner TE (2007) Swarm Intell 1:115–134

    Article  Google Scholar 

  19. Nissink JWM, Murray CW, Hartshorn MJ, Verdonk ML, Cole JC, Taylor R (2002) Proteins 49:457–471

    Article  CAS  Google Scholar 

  20. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  21. Jones G, Willett P, Glen RC (1995) J Mol Biol 245:43–53

    Article  CAS  Google Scholar 

  22. O’Boyle NM, Liebeschuetz JW, Cole JC (2009) J Chem Inf Model 49:1871–1878

    Article  Google Scholar 

  23. Okamoto M, Masuda Y, Muroya A, Yasuno K, Takahashi O, Furuya T (2010) Chem Pharm Bull 58(12):1655–1657

    Article  CAS  Google Scholar 

  24. Huang SY, Grinter SZ, Zou X (2010) Phys Chem Chem Phys 12(40):12899–12908

    Article  CAS  Google Scholar 

  25. Zhong S, Zhang Y, Xiu Z (2010) Curr Opin Drug Discov Devel 13(3):326–334

    CAS  Google Scholar 

  26. Bar-Haim S, Aharon A, Ben Moshe T, Marantz Y, Senderowitz H (2009) J Chem Inf Model 49(3):623–633

    Article  CAS  Google Scholar 

  27. Fukunishi H, Teramoto R, Takada T, Shimada J (2008) J Chem Inf Model 48(5):988–996

    Article  CAS  Google Scholar 

  28. Teramoto R, Fukunishi H (2008) J Chem Inf Model 48(4):747–754

    Article  CAS  Google Scholar 

  29. Teramoto R, Fukunishi H (2008) J Chem Inf Model 48(2):288–295

    Article  CAS  Google Scholar 

  30. Renner S, Derksen S, Radestock S, Moerchen F (2008) J Chem Inf Model 48(2):319–332

    Article  CAS  Google Scholar 

  31. Wolf A, Zimmermann M, Hofmann-Apitius M (2007) J Chem Inf Model 47(3):1036–1044

    Article  CAS  Google Scholar 

  32. Teramoto R, Fukunishi H (2007) J Chem Inf Model 47(2):526–534

    Article  CAS  Google Scholar 

  33. Betzi S, Suhre K, Chetrit B, Guerlesquin F, Morelli X (2006) J Chem Inf Model 46(4):1704–1712

    Article  CAS  Google Scholar 

  34. Oda A, Tsuchida K, Takakura T, Yamaotsu N, Hirono S (2006) J Chem Inf Model 46(1):380–391

    Article  CAS  Google Scholar 

  35. Miteva MA, Lee WH, Montes MO, Villoutreix BO (2005) J Med Chem 48(19):6012–6022

    Article  CAS  Google Scholar 

  36. Xing L, Hodgkin E, Liu Q, Sedlock D (2004) J Comput Aided Mol Des 18(5):333–344

    Article  CAS  Google Scholar 

  37. Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB (2002) J Mol Graph Model 20(4):281–295

    Article  CAS  Google Scholar 

  38. Charifson PS, Corkery JJ, Murcko MA, Walters WP (1999) J Med Chem 42(25):5100–5109

    Article  CAS  Google Scholar 

  39. Mooij WT, Verdonk ML (2005) Proteins 61:272–287

    Article  CAS  Google Scholar 

  40. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Chem Biol 2:317–324

    Article  CAS  Google Scholar 

  41. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose PW (2002) Proteins 48:539–557

    Article  CAS  Google Scholar 

  42. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose PW (2003) Proteins 53:201–219

    Article  CAS  Google Scholar 

  43. Verkhivker GM (2004) J Mol Graph Model 22:335–348

    Article  CAS  Google Scholar 

  44. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Proteins 52:609–623

    Article  CAS  Google Scholar 

  45. Clark M, Cramer RD III, Van Opdenbosch N (1989) J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  46. Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WTM, Mortenson PN, Murray CW (2007) J Med Chem 50:726–741

    Article  CAS  Google Scholar 

  47. Panigrahi SK (2008) Amino Acids 34:617–633

    Article  CAS  Google Scholar 

  48. Panigrahi SK, Desiraju GR (2007) Proteins 67:128–141

    Article  CAS  Google Scholar 

  49. Nelder JA, Mead R (1965) Comput J 7:308–313

    Google Scholar 

  50. Pencheva T, Soumana OS, Pajeva I, Miteva MA (2010) Eur J Med Chem 45:2622–2628

    Article  CAS  Google Scholar 

  51. Keil M, Exner TE, Brickmann J (2003) J Comput Chem 25(6):779–789

    Article  Google Scholar 

  52. Waldherr-Teschner M, Goetze T, Heiden W, Knoblauch M, Vollhardt H, Brickmann J (1992) MOLCAD—computer aided visualization and manipulation of models in molecular science. In: Post FH, Hin AJS (eds) Advances in scientific visualization. Springer Verlag, Heidelberg, pp 58–67

  53. Brickmann J, Goetze T, Heiden W, Moeckel G, Reiling S, Vollhardt H, Zachmann C-D (1995) Interactive Visualization of Molecular Scenarios with MOLCAD/SYBYL. In: Bowie JE (ed) Data visualisation in molecular science: tools for insight and innovation. Addison-Wesley Publishing Company Inc., Reading, Mass, pp 83–97

    Google Scholar 

  54. Brickmann J, Keil M, Exner TE, Marhöfer R (2000) J Mol Model 6:328–340

    Article  CAS  Google Scholar 

  55. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2007) KNIME: the Konstanz information miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R (eds) Studies in classification, data analysis, and knowledge organization (GfKL 2007). Springer, pp 319–326

  56. ten Brink T, Exner TE (2009) J Chem Inf Model 49:1535–1546

    Article  CAS  Google Scholar 

  57. ten Brink T, Exner TE (2010) J Comput Aided Mol Des 24:935–942

    Article  CAS  Google Scholar 

  58. Thilagavathi R, Mancera RL (2010) J Chem Inf Model 50:415–421

    Article  CAS  Google Scholar 

  59. Verdonk ML, Chessari G, Cole JC, Hartshorn MJ, Murray CW, Nissink JWM, Taylor RD, Taylor R (2005) J Med Chem 38:6504–6515

    Article  Google Scholar 

  60. Ravitz O, Zsoldos Z, Simon A (2011) J Comput Aided Mol Des 25:1033–1051

    Article  CAS  Google Scholar 

  61. Seifert MHJ (2009) J Comput Aided Mol Des 23:633–644

    Article  CAS  Google Scholar 

  62. Pham TA, Jain AN (2008) J Comput Aided Mol Des 22:269–286

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Renxiao Wang for providing the diverse test set of 195 protein–ligand complexes as well as Colin Groom and John Liebeschuetz for helpful discussions. The work was supported by the Konstanz Research School Chemical Biology (KoRS-CB), the Zukunftskolleg and the Young Scholar Fund of the Universität Konstanz. O.K. acknowledges support of the Landesgraduiertenförderung Baden-Württemberg and the Postdoc-Programme of the German Academic Exchange Service (DAAD). Additionally, we thank the Common Ulm Stuttgart Server (CUSS) and the Baden-Württemberg grid (bwGRiD), which is part of the D-Grid system, for providing the computer resources making the computations possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Exner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2011_9539_MOESM1_ESM.pdf

Success rates for the 16 different scoring functions of the original study and the 4 scoring functions described in this paper can be found in the supporting information. Binding scores and rmsd values for the best-identified decoy as well as the best-ranked poses of the full docking for each individual complex are also given. Finally, plots showing rmsd values versus the total surface area of the ligand and the binding affinities are available. (PDF 1419 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korb, O., ten Brink, T., Victor Paul Raj, F.R.D. et al. Are predefined decoy sets of ligand poses able to quantify scoring function accuracy?. J Comput Aided Mol Des 26, 185–197 (2012). https://doi.org/10.1007/s10822-011-9539-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9539-5

Keywords